答案:14.解:(1)过点$O'$作$O'H⊥ OA$于点$H$,如答图①.
∵四边形$OABC$是矩形,$OA = 4$,$OC = 3$,
∴$AC=\sqrt{4^{2}+3^{2}} = 5$.
∵将矩形$OABC$沿着$PC$对折,点$O$的对应点为$O'$,
∴$CO' = OC = 3$,$O'P = OP$,$∠ CO'P=∠ COP = 90^{\circ}$,
∴$∠ AO'P = 90^{\circ}$,$O'A = AC - CO' = 5 - 3 = 2$,
∴$O'P^{2}+O'A^{2}=AP^{2}$,即$OP^{2}+2^{2}=(4 - OP)^{2}$,
解得$OP=\frac{3}{2}$,
∴$P(\frac{3}{2},0)$,$O'P=\frac{3}{2}$,$AP = 4 - OP=\frac{5}{2}$.
∵$2S_{△ APO'}=AP· O'H = O'A· O'P$,
∴$O'H=\frac{O'A· O'P}{AP}=\frac{2×\frac{3}{2}}{\frac{5}{2}}=\frac{6}{5}$,
∴$PH=\sqrt{O'P^{2}-O'H^{2}}=\sqrt{(\frac{3}{2})^{2}-(\frac{6}{5})^{2}}=\frac{9}{10}$,
∴$OH = OP + PH=\frac{3}{2}+\frac{9}{10}=\frac{12}{5}$,
∴$O'(\frac{12}{5},\frac{6}{5})$.
设直线$PO'$所对应的函数表达式为$y = kx + b$,
∴$\begin{cases}\frac{12}{5}k + b=\frac{6}{5},\frac{3}{2}k + b = 0,\end{cases}$解得$\begin{cases}k=\frac{4}{3},\\b = - 2,\end{cases}$
∴直线$PO'$所对应的函数表达式为$y=\frac{4}{3}x - 2$.
(2)当点$P$在线段$OA$的延长线上时,如答图②.
∵$BC// OP$,
∴$∠ BCP=∠ CPO$.
∵将矩形$OABC$沿着$PC$对折,点$O$的对应点为$O'$,
∴$∠ CPO'=∠ CPO$,
∴$∠ BCP=∠ CPO'$,
∴$BP = BC = 4$,
∴$AP=\sqrt{BP^{2}-AB^{2}}=\sqrt{4^{2}-3^{2}}=\sqrt{7}$,
∴$OP = OA + AP = 4+\sqrt{7}$,
∴$P(4+\sqrt{7},0)$.
设直线$l$所对应的函数表达式为$y = mx + n$,把$P(4+\sqrt{7},0)$,$B(4,3)$代入,得
$\begin{cases}(4+\sqrt{7})m + n = 0,\\4m + n = 3,\end{cases}$解得$\begin{cases}m=-\frac{3\sqrt{7}}{7},\=\frac{21 + 12\sqrt{7}}{7},\end{cases}$
∴直线$l$所对应的函数表达式为$y=-\frac{3\sqrt{7}}{7}x+\frac{21 + 12\sqrt{7}}{7}$.
当点$P$在线段$OA$上时,如答图③.
同上可得$PB = BC = 4$,$P(4-\sqrt{7},0)$,
∴直线$l$所对应的函数表达式为$y=\frac{3\sqrt{7}}{7}x+\frac{21 - 12\sqrt{7}}{7}$.
综上所述,直线$l$所对应的函数表达式为$y=-\frac{3\sqrt{7}}{7}x+\frac{21 + 12\sqrt{7}}{7}$或$y=\frac{3\sqrt{7}}{7}x+\frac{21 - 12\sqrt{7}}{7}$.