答案:3. (1)解:连接PD,BD,如答图
∵$CP = \frac{1}{3}BC,CQ = \frac{1}{3}CD,S_{△PCQ} = 4,$
∴$\frac{S_{△PCQ}}{S_{△PCD}} = \frac{1}{3},\frac{S_{△PDC}}{S_{△BCD}} = \frac{1}{3},$
∴$S_{△PCD} = 12,S_{△BCD} = 36,$
则$S_{△BCD} = S_{△ABD} = 36,$
∴四边形ABCD的面积为72.
(2)证明:连接BQ,BF,DE,如答图.
可得$S_{△BPD} = \frac{2}{3}S_{△BCD} = 24,S_{△BQD} = \frac{2}{3}S_{△BCD} = 24,$
∴PQ//BD,同理可得$S_{△BED} = S_{△BFD} = 12,$
∴EF//BD,
∴PQ//BD//EF,即PQ//EF;