9. 已知平面直角坐标系中,点$ A(2,3) $,$ B(-3,0) $,$ C(2,-2) $,若以A,B,C,D为顶点的四边形是平行四边形,则点D的坐标为
(-3,5)或(7,1)或(-3,-5)
.
解析:
设点$D$的坐标为$(x,y)$。
情况一:以$AB$、$AC$为邻边
$\overrightarrow{AB}=(-3 - 2, 0 - 3)=(-5,-3)$,$\overrightarrow{AC}=(2 - 2, -2 - 3)=(0,-5)$
$\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{AC}=(-5 + 0, -3 + (-5))=(-5,-8)$
$\because A(2,3)$,$\therefore x = 2 + (-5) = -3$,$y = 3 + (-8) = -5$,即$D(-3,-5)$
情况二:以$AB$、$BC$为邻边
$\overrightarrow{BA}=(2 - (-3), 3 - 0)=(5,3)$,$\overrightarrow{BC}=(2 - (-3), -2 - 0)=(5,-2)$
$\overrightarrow{BD}=\overrightarrow{BA}+\overrightarrow{BC}=(5 + 5, 3 + (-2))=(10,1)$
$\because B(-3,0)$,$\therefore x = -3 + 10 = 7$,$y = 0 + 1 = 1$,即$D(7,1)$
情况三:以$AC$、$BC$为邻边
$\overrightarrow{CA}=(2 - 2, 3 - (-2))=(0,5)$,$\overrightarrow{CB}=(-3 - 2, 0 - (-2))=(-5,2)$
$\overrightarrow{CD}=\overrightarrow{CA}+\overrightarrow{CB}=(0 + (-5), 5 + 2)=(-5,7)$
$\because C(2,-2)$,$\therefore x = 2 + (-5) = -3$,$y = -2 + 7 = 5$,即$D(-3,5)$
综上,点$D$的坐标为$(-3,5)$或$(7,1)$或$(-3,-5)$。