10. (2025·无锡模拟)已知$m$,$n$是两个连续的偶数$(0 < m < n)$,且$a = m - 2$,$b = n + 2$,$c = \sqrt{bm + 4} + \sqrt{an + 4}$,则下列对$c$的表述中正确的是(
B
)
A.总是奇数
B.总是偶数
C.总是无理数
D.可能是有理数,也可能是无理数
答案:10. B 解析:$\because m$,$n$ 是两个连续的偶数 $(0 < m < n)$,$\therefore n = m + 2$. $\because a = m - 2$,$b = n + 2$,$\therefore c = \sqrt{(m + 2 + 2)m + 4} + \sqrt{(m - 2)(m + 2) + 4} = \sqrt{m^{2} + 4m + 4} + \sqrt{m^{2} - 4 + 4} = \sqrt{(m + 2)^{2}} + \sqrt{m^{2}} = m + 2 + m = 2(m + 1)$,$\therefore c$ 是偶数. 故选 B.
11. (1)已知$(\sqrt{a})^{2} = 5$,$\sqrt{b^{2}} = 3$,则$a + b$的值为
$2$ 或 $8$
;
(2)已知$\sqrt{a^{2}} = 1$,$b = 2$,则$\sqrt{(a + b)^{2}}$的值为
$1$ 或 $3$
。
答案:11. (1) $2$ 或 $8$ 解析:可得 $a = 5$,$b = \pm 3$,$\therefore a + b$ 的值为 $2$ 或 $8$.
(2) $1$ 或 $3$ 解析:可得 $a = \pm 1$,$b = \pm 2$,$\sqrt{(a + b)^{2}} = |a + b|$,代入可得值为 $1$ 或 $3$.
12. (凉山州中考)当$-1 < a < 0$时,$\sqrt{(a + \frac{1}{a})^{2} - 4} - \sqrt{(a - \frac{1}{a})^{2} + 4} =$
$2a$
。
答案:12. $2a$ 解析:$\because -1 < a < 0$,$\therefore \frac{1}{a} < a < 0$,$\therefore$ 原式 $= \sqrt{(a - \frac{1}{a})^{2}} - \sqrt{(a + \frac{1}{a})^{2}} = |a - \frac{1}{a}| - |a + \frac{1}{a}| = a - \frac{1}{a} + a + \frac{1}{a} = 2a$.
13. (1)若$x$,$y$都是实数,且满足$y > \sqrt{\frac{1}{2} - x} + \sqrt{x - \frac{1}{2}} + 1$,试化简代数式$x - 1 - \sqrt{(x - 1)^{2}} - \frac{\sqrt{y^{2} - 2y + 1}}{y - 1}$;

答案:13. (1) 由题意,得 $\frac{1}{2} - x ≥ 0$ 且 $x - \frac{1}{2} ≥ 0$,$\therefore x = \frac{1}{2}$,$\therefore y > 1$. 原式 $= |x - 1| - \sqrt{(x - 1)^{2}} - \frac{\sqrt{(y - 1)^{2}}}{y - 1} = \frac{1}{2} - \frac{1}{2} - 1 = -1$.
(2)设$a$,$b$,$c$为$△ ABC$的三边,化简:$\sqrt{(a + b + c)^{2}} + \sqrt{(a - b - c)^{2}} + \sqrt{(b - a - c)^{2}} - \sqrt{(c - b - a)^{2}}$。
答案:(2) 根据 $a$,$b$,$c$ 为 $△ ABC$ 的三边,得 $a + b + c > 0$,$a - b - c < 0$,$b - a - c < 0$,$c - b - a < 0$,则原式 $= |a + b + c| + |a - b - c| + |b - a - c| - |c - b - a| = a + b + c + b + c - a + a + c - b - a - b + c = 4c$.
14. 设$S = \sqrt{1 + \frac{1}{1^{2}} + \frac{1}{2^{2}}} + \sqrt{1 + \frac{1}{2^{2}} + \frac{1}{3^{2}}} + \sqrt{1 + \frac{1}{3^{2}} + \frac{1}{4^{2}}} + ··· + \sqrt{1 + \frac{1}{2024^{2}} + \frac{1}{2025^{2}}}$,则$S$最接近的整数是(
B
)
A.$2024$
B.$2025$
C.$2026$
D.$2027$
答案:14. B 解析:设 $n$ 为任意正整数,$\therefore \sqrt{1 + \frac{1}{n^{2}} + \frac{1}{(n + 1)^{2}}} = \sqrt{\frac{n^{2}(n + 1)^{2} + n^{2} + (n + 1)^{2}}{[n(n + 1)]^{2}}} = \sqrt{\frac{n^{2}(n + 1)^{2} + 2n(n + 1) + 1}{[n(n + 1)]^{2}}} = \frac{n^{2} + n + 1}{n(n + 1)} = 1 + \frac{1}{n(n + 1)}$,$\therefore S = (1 + \frac{1}{1 × 2}) + (1 + \frac{1}{2 × 3}) + (1 + \frac{1}{3 × 4}) + ··· + (1 + \frac{1}{2024 × 2025}) = 2024 + (\frac{1}{1 × 2} + \frac{1}{2 × 3} + \frac{1}{3 × 4} + ··· + \frac{1}{2024 × 2025}) = 2024 + (1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + ··· + \frac{1}{2024} - \frac{1}{2025}) = 2025 - \frac{1}{2025}$,因此与 $S$ 最接近的整数是 $2025$. 故选 B.
15. 你见过像$\sqrt{3 - 2\sqrt{2}}$,$\sqrt{48 - \sqrt{45}}$,$···$,这样的根式吗?这一类根式叫作复合二次根式,有些复合二次根式可以化简,如:$\sqrt{3 - 2\sqrt{2}} = \sqrt{2 - 2\sqrt{2} + 1} = \sqrt{(\sqrt{2})^{2} - 2 × 1 × \sqrt{2} + 1} = \sqrt{(\sqrt{2} - 1)^{2}} = \sqrt{2} - 1$。
(1)请用上述方法化简:
①$\sqrt{4 - 2\sqrt{3}}$;
②$\sqrt{7 - 4\sqrt{3}}$。
(2)若$a + 6\sqrt{5} = (m + \sqrt{5}n)^{2}$,且$a$,$m$,$n$为正整数,求$a$的值。
(3)若$1 ≤ x ≤ 2$,解方程$\sqrt{x + 2\sqrt{x - 1}} + \sqrt{x - 2\sqrt{x - 1}} = \frac{1}{2}(x + 3)$。
答案:15. (1) ① $\sqrt{4 - 2\sqrt{3}} = \sqrt{3 - 2\sqrt{3} + 1} = \sqrt{(\sqrt{3})^{2} - 2 × \sqrt{3} × 1 + 1^{2}} = \sqrt{(\sqrt{3} - 1)^{2}} = \sqrt{3} - 1$.
② $\sqrt{7 - 4\sqrt{3}} = \sqrt{4 - 4\sqrt{3} + 3} = \sqrt{2^{2} - 2 × 2 × \sqrt{3} + (\sqrt{3})^{2}} = \sqrt{(2 - \sqrt{3})^{2}} = 2 - \sqrt{3}$.
(2) $\because a + 6\sqrt{5} = (m + \sqrt{5}n)^{2} = m^{2} + 5n^{2} + 2\sqrt{5}mn$,$\therefore a = m^{2} + 5n^{2}$ 且 $2\sqrt{5}mn = 6\sqrt{5}$,$\therefore mn = 3$. $\because a$,$m$,$n$ 为正整数,$\therefore$ 当 $m = 1$,$n = 3$ 时,$a = 46$;当 $m = 3$,$n = 1$ 时,$a = 14$,$\therefore a$ 的值为 $14$ 或 $46$.
(3) $\because x + 2\sqrt{x - 1} = (\sqrt{x - 1} + 1)^{2}$,$x - 2\sqrt{x - 1} = (\sqrt{x - 1} - 1)^{2}$,$\therefore \sqrt{x + 2\sqrt{x - 1}} + \sqrt{x - 2\sqrt{x - 1}} = \sqrt{(\sqrt{x - 1} + 1)^{2}} + \sqrt{(\sqrt{x - 1} - 1)^{2}} = |\sqrt{x - 1} + 1| + |\sqrt{x - 1} - 1|$. 又 $\because 1 ≤ x ≤ 2$,$\therefore \sqrt{x - 1} - 1 ≤ 0$,上式 $= \sqrt{x - 1} + 1 + 1 - \sqrt{x - 1} = 2$,故方程为 $\frac{1}{2}(x + 3) = 2$,解得 $x = 1$.