20. (12分)先化简,再求值:
(1)$(2x + y)^2 + (x - y)(x + y) - 5x(x - y)$,其中$x = \sqrt{6} - 1$,$y = \sqrt{6} + 1$;
(2)$(\frac{a}{a - 1} - \frac{a}{a + 1}) ÷ \frac{a^2}{a^2 - 1}$,其中$a = 2\sqrt{3}$.
答案:20.(1)原式$=9xy$。当$x = \sqrt{6} - 1$,$y = \sqrt{6} + 1$时,原式$=9(\sqrt{6} - 1)(\sqrt{6} + 1)=9×(6 - 1)=45$ (2)原式$ = \frac { 2 } { a } $。当$a = 2 \sqrt { 3 }$时,原式$ = \frac { 2 } { 2 \sqrt { 3 } } = \frac { 1 } { \sqrt { 3 } } = \frac { \sqrt { 3 } } { 3 }$
解析:
(1)原式$=(4x^2 + 4xy + y^2) + (x^2 - y^2) - (5x^2 - 5xy)$
$=4x^2 + 4xy + y^2 + x^2 - y^2 - 5x^2 + 5xy$
$=9xy$
当$x = \sqrt{6} - 1$,$y = \sqrt{6} + 1$时,
原式$=9(\sqrt{6} - 1)(\sqrt{6} + 1)$
$=9×[(\sqrt{6})^2 - 1^2]$
$=9×(6 - 1)$
$=9×5$
$=45$
(2)原式$=[\frac{a(a + 1)}{(a - 1)(a + 1)} - \frac{a(a - 1)}{(a - 1)(a + 1)}] ÷ \frac{a^2}{a^2 - 1}$
$=\frac{a(a + 1) - a(a - 1)}{(a - 1)(a + 1)} × \frac{(a - 1)(a + 1)}{a^2}$
$=\frac{a^2 + a - a^2 + a}{a^2}$
$=\frac{2a}{a^2}$
$=\frac{2}{a}$
当$a = 2\sqrt{3}$时,
原式$=\frac{2}{2\sqrt{3}}$
$=\frac{1}{\sqrt{3}}$
$=\frac{\sqrt{3}}{3}$
21. (11分)已知$y = 2\sqrt{3x - 1} + 3\sqrt{1 - 3x} + \frac{1}{2}$,求$\sqrt{xy} ÷ \frac{1}{2}\sqrt{\frac{1}{y}}$的值.
答案:21.由题意,得$\begin{cases}3x - 1 \geqslant 0\\1 - 3x \geqslant 0\end{cases}$,解得$x = \frac{1}{3}$。$\therefore y = \frac{1}{2}$,$\therefore$原式$ = \sqrt{xy} ÷ \frac{\sqrt{y}}{2y} = \sqrt{xy} · \frac{2y}{\sqrt{y}} = 2y\sqrt{x} = \frac{\sqrt{3}}{3}$
解析:
由题意,得$\begin{cases}3x - 1 \geqslant 0\\1 - 3x \geqslant 0\end{cases}$,解得$x = \frac{1}{3}$。
$\therefore y = 2\sqrt{3×\frac{1}{3} - 1} + 3\sqrt{1 - 3×\frac{1}{3}} + \frac{1}{2} = \frac{1}{2}$。
$\sqrt{xy} ÷ \frac{1}{2}\sqrt{\frac{1}{y}} = \sqrt{\frac{1}{3}×\frac{1}{2}} ÷ ( \frac{1}{2}\sqrt{\frac{1}{\frac{1}{2}}} ) = \sqrt{\frac{1}{6}} ÷ ( \frac{1}{2}\sqrt{2} ) = \frac{\sqrt{6}}{6} ÷ \frac{\sqrt{2}}{2} = \frac{\sqrt{6}}{6} × \frac{2}{\sqrt{2}} = \frac{\sqrt{3}}{3}$。