6. (2025·天津)计算$\frac{2}{a^{2}-1}+\frac{1}{a + 1}$的结果为(
A
)
A.$\frac{1}{a - 1}$
B.$\frac{1}{a + 1}$
C.$\frac{1}{1 - a}$
D.1
答案:6. A
解析:
$\begin{aligned}\frac{2}{a^2 - 1} + \frac{1}{a + 1}&=\frac{2}{(a + 1)(a - 1)} + \frac{a - 1}{(a + 1)(a - 1)}\\&=\frac{2 + a - 1}{(a + 1)(a - 1)}\\&=\frac{a + 1}{(a + 1)(a - 1)}\\&=\frac{1}{a - 1}\end{aligned}$
A
7. (2024·雅安)已知$\frac{2}{a}+\frac{1}{b}=1(a + b\neq0)$,则$\frac{a + ab}{a + b}$的值为(
C
)
A.$\frac{1}{2}$
B.1
C.2
D.3
答案:7. C
解析:
由$\frac{2}{a}+\frac{1}{b}=1$,通分得$\frac{2b + a}{ab}=1$,即$a + 2b = ab$,移项得$ab - a = 2b$,$a(b - 1)=2b$,$a=\frac{2b}{b - 1}$。
将$a=\frac{2b}{b - 1}$代入$\frac{a + ab}{a + b}$:
$\begin{aligned}\frac{\frac{2b}{b - 1}+\frac{2b}{b - 1}· b}{\frac{2b}{b - 1}+b}&=\frac{\frac{2b + 2b^2}{b - 1}}{\frac{2b + b(b - 1)}{b - 1}}\\&=\frac{2b + 2b^2}{2b + b^2 - b}\\&=\frac{2b(b + 1)}{b(b + 1)}\\&=2\end{aligned}$
答案:C
8. (整体思想)已知$a^{2}+3ab + b^{2}=0(a\neq0,b\neq0)$,则代数式$\frac{b}{a}+\frac{a}{b}$的值为
-3
.
答案:8. -3 解析:$\because a^{2}+3ab + b^{2}=0$,$\therefore a^{2}+b^{2}=-3ab$.$\therefore \frac {b}{a}+ \frac {a}{b}=\frac {a^{2}+b^{2}}{ab}=\frac {-3ab}{ab}=-3$.
9. 计算:
(1)$\frac{x^{2}}{x + 1}-x + 1$;
(2)$\frac{x^{2}-4x + 4}{x^{2}-4}+\frac{x - 2}{x^{2}+2x}+2$.
答案:9. (1) $\frac {1}{x + 1}$ (2) $\frac {3x^{2}+3x - 2}{x^{2}+2x}$
解析:
(1)$\frac{x^{2}}{x + 1}-x + 1$
$=\frac{x^{2}}{x + 1}-\frac{(x - 1)(x + 1)}{x + 1}$
$=\frac{x^{2}-(x^{2}-1)}{x + 1}$
$=\frac{x^{2}-x^{2}+1}{x + 1}$
$=\frac{1}{x + 1}$
(2)$\frac{x^{2}-4x + 4}{x^{2}-4}+\frac{x - 2}{x^{2}+2x}+2$
$=\frac{(x - 2)^{2}}{(x + 2)(x - 2)}+\frac{x - 2}{x(x + 2)}+2$
$=\frac{x - 2}{x + 2}+\frac{x - 2}{x(x + 2)}+2$
$=\frac{x(x - 2)}{x(x + 2)}+\frac{x - 2}{x(x + 2)}+\frac{2x(x + 2)}{x(x + 2)}$
$=\frac{x(x - 2)+x - 2 + 2x(x + 2)}{x(x + 2)}$
$=\frac{x^{2}-2x + x - 2 + 2x^{2}+4x}{x^{2}+2x}$
$=\frac{3x^{2}+3x - 2}{x^{2}+2x}$
10. (教材变式)(1)已知$a > b > 0$,试比较$\frac{b}{a}$与$\frac{b + 2}{a + 2}$的大小;
(2)比较大小:$\frac{2028}{2029}\_\_\_\_\_\frac{2026}{2027}$(填“$>$”“$<$”或“$=$”).
答案:10. (1) 根据题意,得$\frac {b}{a}-\frac {b + 2}{a + 2}=\frac {b(a + 2)-a(b + 2)}{a(a + 2)}=\frac {2(b - a)}{a(a + 2)}$.
$\because a > b > 0$,$\therefore b - a < 0$,$a(a + 2) > 0$.$\therefore \frac {2(b - a)}{a(a + 2)} < 0$,即$\frac {b}{a}-\frac {b + 2}{a + 2} < 0$.$\therefore \frac {b}{a} < \frac {b + 2}{a + 2}$
(2) > 解析:在$\frac {b}{a}-\frac {b + 2}{a + 2}$中,令$a = 2027$,$b = 2026$,即可得出结论.
11. 已知$\frac{A}{x - 1}-\frac{B}{2 - x}=\frac{2x - 6}{(x - 1)(x - 2)}$,求$A$,$B$的值.
答案:11. $\frac {A}{x - 1}-\frac {B}{2 - x}=\frac {A(x - 2)+B(x - 1)}{(x - 1)(x - 2)}=\frac {(A + B)x - 2A - B}{(x - 1)(x - 2)}=\frac {2x - 6}{(x - 1)(x - 2)}$,$\therefore \begin{cases}A + B = 2\\-2A - B = -6\end{cases}$, 解得$\begin{cases}A = 4\\B = -2\end{cases}$
解析:
$\frac{A}{x - 1}-\frac{B}{2 - x}=\frac{A}{x - 1}+\frac{B}{x - 2}=\frac{A(x - 2)+B(x - 1)}{(x - 1)(x - 2)}=\frac{(A + B)x - 2A - B}{(x - 1)(x - 2)}$,
因为$\frac{A}{x - 1}-\frac{B}{2 - x}=\frac{2x - 6}{(x - 1)(x - 2)}$,
所以$\frac{(A + B)x - 2A - B}{(x - 1)(x - 2)}=\frac{2x - 6}{(x - 1)(x - 2)}$,
则可得方程组$\begin{cases}A + B = 2\\-2A - B = -6\end{cases}$,
解方程组,将第一个方程$A + B = 2$变形为$B = 2 - A$,
代入第二个方程$-2A - (2 - A) = -6$,
即$-2A - 2 + A = -6$,
$-A - 2 = -6$,
$-A = -4$,
解得$A = 4$,
将$A = 4$代入$B = 2 - A$,得$B = 2 - 4 = -2$,
所以$\begin{cases}A = 4\\B = -2\end{cases}$