1. (2025·威海改编)下列各式中,计算过程及结果都正确的是 (
C
)
A.$\frac{y}{5x}÷\frac{x}{3}=\frac{y}{5x}·3x=\frac{3}{5}y$
B.$8xy÷\frac{4x}{y}=\frac{1}{8xy}·\frac{4x}{y}=\frac{1}{2y^{2}}$
C.$\frac{x}{2a}÷\frac{2b}{y}=\frac{x}{2a}·\frac{y}{2b}=\frac{xy}{4ab}$
D.$b÷\frac{a}{b}·\frac{b}{a}=b$
答案:1. C
2. 计算$(-\frac{2a}{b^{2}})^{3}·(\frac{2b}{a})^{2}÷(-\frac{2b}{a})^{2}$的结果是 (
B
)
A.$-\frac{8a}{b^{6}}$
B.$-\frac{8a^{3}}{b^{6}}$
C.$\frac{16a^{2}}{b^{6}}$
D.$-\frac{16a^{2}}{b^{6}}$
答案:2. B
解析:
$(-\frac{2a}{b^{2}})^{3}·(\frac{2b}{a})^{2}÷(-\frac{2b}{a})^{2}$
$=(-\frac{8a^{3}}{b^{6}})·(\frac{4b^{2}}{a^{2}})÷(\frac{4b^{2}}{a^{2}})$
$=(-\frac{8a^{3}}{b^{6}})·(\frac{4b^{2}}{a^{2}})·(\frac{a^{2}}{4b^{2}})$
$=-\frac{8a^{3}}{b^{6}}$
结果是B。
3. 计算$\frac{2}{x^{2}-4}÷\frac{1}{x^{2}-2x}$的结果是 (
B
)
A.$\frac{x}{x + 2}$
B.$\frac{2x}{x + 2}$
C.$\frac{2x}{x - 2}$
D.$\frac{2}{x(x + 2)}$
答案:3. B
解析:
$\begin{aligned}\frac{2}{x^{2}-4}÷\frac{1}{x^{2}-2x}&=\frac{2}{(x+2)(x-2)}×(x^{2}-2x)\\&=\frac{2}{(x+2)(x-2)}× x(x-2)\\&=\frac{2x}{x+2}\end{aligned}$
B
4. 计算:
(1) $\frac{2y^{2}}{3x}÷3x=$
$\frac{2y^{2}}{9x^{2}}$
;
(2) $(-\frac{3y^{4}}{x^{3}})^{4}=$
$\frac{81y^{16}}{x^{12}}$
.
答案:4. (1) $\frac{2y^{2}}{9x^{2}}$ (2) $\frac{81y^{16}}{x^{12}}$
5. (2025·吉林)当$a = 2025$时,代数式$\frac{a}{a - 1}·\frac{a^{2}-1}{a}$的值为
2026
.
答案:5. 2026
解析:
$\begin{aligned}&\frac{a}{a - 1}·\frac{a^{2}-1}{a}\\=&\frac{a}{a - 1}·\frac{(a - 1)(a + 1)}{a}\\=&a + 1\\\end{aligned}$
当$a = 2025$时,原式$=2025 + 1 = 2026$
2026
6. (教材变式)计算:
(1) $\frac{5c^{2}}{6ab}·\frac{-3b}{a^{2}c}$;
(2) (2025·攀枝花)$\frac{a}{a^{2}-1}·\frac{a^{2}+a}{a^{2}}$;
(3) $\frac{2a^{2}}{a + 4}·\frac{a^{2}-16}{a^{2}-4a}$;
(4) $\frac{a + 3}{4 - a}÷\frac{a^{2}+3a}{a^{2}-8a + 16}$.
答案:6. (1) $-\frac{5c}{2a^{3}}$ (2) $\frac{1}{a - 1}$ (3) $2a$ (4) $\frac{4 - a}{a}$
解析:
(1) $\frac{5c^{2}}{6ab}·\frac{-3b}{a^{2}c}=\frac{5c^{2}·(-3b)}{6ab·a^{2}c}=\frac{-15bc^{2}}{6a^{3}bc}=-\frac{5c}{2a^{3}}$
(2) $\frac{a}{a^{2}-1}·\frac{a^{2}+a}{a^{2}}=\frac{a}{(a+1)(a-1)}·\frac{a(a+1)}{a^{2}}=\frac{a·a(a+1)}{(a+1)(a-1)·a^{2}}=\frac{1}{a - 1}$
(3) $\frac{2a^{2}}{a + 4}·\frac{a^{2}-16}{a^{2}-4a}=\frac{2a^{2}}{a + 4}·\frac{(a+4)(a-4)}{a(a - 4)}=\frac{2a^{2}(a+4)(a-4)}{(a + 4)a(a - 4)}=2a$
(4) $\frac{a + 3}{4 - a}÷\frac{a^{2}+3a}{a^{2}-8a + 16}=\frac{a + 3}{4 - a}·\frac{(a - 4)^{2}}{a(a + 3)}=\frac{a + 3}{-(a - 4)}·\frac{(a - 4)^{2}}{a(a + 3)}=\frac{4 - a}{a}$