7. (分类讨论思想)设AB,CD,EF是同一平面内三条互相平行的直线.已知AB与CD之间的距离是12 cm,EF与CD之间的距离是5 cm,则AB与EF之间的距离是
7 cm或17 cm
.
答案:7.7 cm或17 cm
解析:
当EF在AB与CD之间时,AB与EF之间的距离为$12 - 5 = 7\ \mathrm{cm}$;当EF在CD的另一侧时,AB与EF之间的距离为$12 + 5 = 17\ \mathrm{cm}$。
7 cm或17 cm
8. 如图,在矩形ABCD中,AB=6,AD=8,且有一点P从点B出发,沿着BD往点D移动,过点P作AB的垂线,交AB于点E,过点P作AD的垂线,交AD于点F,连接EF,则EF长的最小值为
$\frac {24}{5}$
.

答案:8.$\frac {24}{5}$解析:根据题意,得四边形AEPF为矩形,连接AP,则AP=EF,将求EF长的最小值转化成求AP长的最小值.由于垂线段最短,因此当AP⊥BD时,AP的长取得最小值.此时$S_{\triangle ABD} = \frac{1}{2}AB· AD = \frac{1}{2}BD· AP$,得$AP = \frac{24}{5},\therefore$EF长的最小值为$\frac{24}{5}$.
解析:
解:在矩形ABCD中,AB=6,AD=8,
∵PE⊥AB,PF⊥AD,∠BAD=90°,
∴四边形AEPF为矩形,
连接AP,则AP=EF,
要使EF最小,即AP最小,
当AP⊥BD时,AP最小,
在Rt△ABD中,BD=$\sqrt{AB^2+AD^2}=\sqrt{6^2+8^2}=10$,
∵$S_{\triangle ABD}=\frac{1}{2}AB·AD=\frac{1}{2}BD·AP$,
∴$\frac{1}{2}×6×8=\frac{1}{2}×10·AP$,
解得AP=$\frac{24}{5}$,
∴EF长的最小值为$\frac{24}{5}$.
9. (2024·贵州)如图,四边形ABCD的对角线AC与BD相交于点O,AD//BC,∠ABC=90°,
.有以下条件:①AB//CD;②AD=BC.

(1)请从①②中任选1个填到横线上(填序号),求证:四边形ABCD是矩形;
(2)在(1)的条件下,若AB=3,AC=5,求四边形ABCD的面积.
答案:9.(1)选择不唯一,如选择①$\because$AD//BC,AB//CD,$\therefore$四边形ABCD是平行四边形.$\because \angle ABC = 90°,\therefore$四边形ABCD是矩形 (2)$\because \angle ABC = 90°,AB = 3,AC = 5,\therefore BC = \sqrt{AC^2 - AB^2} = \sqrt{5^2 - 3^2} = 4.\because$四边形ABCD是矩形,$\therefore$四边形ABCD的面积$= AB· BC = 3×4 = 12$
解析:
(1)选择①
∵AD//BC,AB//CD,
∴四边形ABCD是平行四边形.
∵∠ABC=90°,
∴四边形ABCD是矩形.
(2)
∵∠ABC=90°,AB=3,AC=5,
∴BC=$\sqrt{AC^2 - AB^2}=\sqrt{5^2 - 3^2}=4$.
∵四边形ABCD是矩形,
∴四边形ABCD的面积=AB·BC=3×4=12.
10. 如图,AC=AB,AD=AE,DE=BC,∠BAD=∠CAE.求证:四边形BCDE是矩形(用两种不同的矩形判定方法证明).

]
答案:10.证法一:$\because \angle BAD = \angle CAE,\therefore \angle BAD - \angle BAC = \angle CAE - \angle BAC$,即$\angle CAD = \angle BAE$.又$\because AC = AB,AD = AE,\therefore \triangle CAD \cong \triangle BAE,\therefore \angle CDA = \angle BEA,CD = BE$.又$\because DE = BC,\therefore$四边形BCDE是平行四边形,$\therefore BE//CD,\therefore \angle CDE + \angle BED = 180°.\because AD = AE,\therefore \angle ADE = \angle AED,\therefore \angle CDA - \angle ADE = \angle BEA - \angle AED$,即$\angle CDE = \angle BED,\therefore \angle CDE = \angle BED = 90°,\therefore$四边形BCDE是矩形 证法二:同证法一,得$\triangle CAD \cong \triangle BAE,\therefore CD = BE$.又$\because DE = BC,\therefore$四边形BCDE是平行四边形.连接BD,CE.$\because AB = AC,\angle BAD = \angle CAE,AD = AE,\therefore \triangle BAD \cong \triangle CAE,\therefore BD = CE,\therefore$四边形BCDE是矩形