零五网 全部参考答案 通城学典课时作业本答案 2026年通城学典课时作业本八年级数学下册苏科版江苏专版 第125页解析答案
9. 一个矩形的长、宽分别为$\sqrt{48}\ \mathrm{cm}$,$\sqrt{12}\ \mathrm{cm}$,则它的周长为
$12\sqrt{3}$
$\mathrm{cm}$.
答案:9.$12\sqrt{3}$
解析:
矩形周长为 $2×(\sqrt{48}+\sqrt{12})$,化简得 $2×(4\sqrt{3}+2\sqrt{3})=2×6\sqrt{3}=12\sqrt{3}$。
$12\sqrt{3}$
10. (易错题)$\sqrt{12}$与最简二次根式$5\sqrt{a + 1}$是同类二次根式,则$a$的值为
2
.
答案:10.2 [易错分析]先将$\sqrt{12}$化为最简二次根式,再根据同类二次根式的概念构造方程求解.本题最易出现的差错是没有将$\sqrt{12}$化简直接构造方程求解.
解析:
$\sqrt{12} = 2\sqrt{3}$,因为$\sqrt{12}$与$5\sqrt{a + 1}$是同类二次根式,所以$a + 1 = 3$,解得$a = 2$。
11. 计算:
(1)$4\sqrt{5}+\sqrt{45}-\sqrt{32}+\dfrac{1}{2}\sqrt{2}$;
(2)$2\sqrt{\dfrac{1}{8}}-\sqrt{12}-(\sqrt{\dfrac{1}{2}}-2\sqrt{\dfrac{1}{3}})$;
(3)$\sqrt{6}-(2\sqrt{\dfrac{3}{2}}-3\sqrt{\dfrac{2}{3}})-\dfrac{1}{2}\sqrt{108}$;
(4)$\sqrt{2x}-\dfrac{5}{2x}\sqrt{8x^{3}}+2\sqrt{\dfrac{x}{8}}(x\gt 0)$.
答案:11.(1)$7\sqrt{5}-\frac{7}{2}\sqrt{2}$ (2)$-\frac{4}{3}\sqrt{3}$ (3)$\sqrt{6}-3\sqrt{3}$ (4)$-\frac{7}{2}\sqrt{2x}$
解析:
(1)$4\sqrt{5}+\sqrt{45}-\sqrt{32}+\dfrac{1}{2}\sqrt{2}$
$=4\sqrt{5}+3\sqrt{5}-4\sqrt{2}+\dfrac{1}{2}\sqrt{2}$
$=7\sqrt{5}-\dfrac{7}{2}\sqrt{2}$
(2)$2\sqrt{\dfrac{1}{8}}-\sqrt{12}-(\sqrt{\dfrac{1}{2}}-2\sqrt{\dfrac{1}{3}})$
$=2×\dfrac{\sqrt{2}}{4}-2\sqrt{3}-\dfrac{\sqrt{2}}{2}+\dfrac{2\sqrt{3}}{3}$
$=\dfrac{\sqrt{2}}{2}-2\sqrt{3}-\dfrac{\sqrt{2}}{2}+\dfrac{2\sqrt{3}}{3}$
$=-\dfrac{4}{3}\sqrt{3}$
(3)$\sqrt{6}-(2\sqrt{\dfrac{3}{2}}-3\sqrt{\dfrac{2}{3}})-\dfrac{1}{2}\sqrt{108}$
$=\sqrt{6}-(2×\dfrac{\sqrt{6}}{2}-3×\dfrac{\sqrt{6}}{3})-\dfrac{1}{2}×6\sqrt{3}$
$=\sqrt{6}-(\sqrt{6}-\sqrt{6})-3\sqrt{3}$
$=\sqrt{6}-\sqrt{6}+3\sqrt{3}-3\sqrt{3}$
$=\sqrt{6}-3\sqrt{3}$
(4)$\sqrt{2x}-\dfrac{5}{2x}\sqrt{8x^{3}}+2\sqrt{\dfrac{x}{8}}(x\gt 0)$
$=\sqrt{2x}-\dfrac{5}{2x}×2x\sqrt{2x}+2×\dfrac{\sqrt{2x}}{4}$
$=\sqrt{2x}-5\sqrt{2x}+\dfrac{\sqrt{2x}}{2}$
$=-\dfrac{7}{2}\sqrt{2x}$
12. (新考法·阅读理解)已知$a$为正整数,且$\sqrt{2a + 1}$与$\sqrt{7}$能合并,试写出三个满足条件的$a$的值.
解:$\because \sqrt{2a + 1}$与$\sqrt{7}$能合并,$\therefore$设$\sqrt{2a + 1}=m\sqrt{7}$($m$为正整数),$\therefore 2a + 1 = 7m^{2}$,$\therefore a=\dfrac{7m^{2}-1}{2}$.又$\because a$为正整数,$\therefore 7m^{2}-1$为偶数,$\therefore m$为奇数,$\therefore$当$m = 1$时,$a = 3$;当$m = 3$时,$a = 31$;当$m = 5$时,$a = 87$.$\therefore$满足条件的$a$的值可以为$3$,$31$,$87$(也可取$m$为其他正奇数,得出不同的答案).
请根据上面的信息,解决问题:
已知$a$为正整数,且$\sqrt{2a + 3}$与$\sqrt{5}$能合并,试写出三个满足条件的$a$的值.
答案:12.$\because\sqrt{2a + 3}$与$\sqrt{5}$能合并,$\therefore$设$\sqrt{2a + 3}=m\sqrt{5}(m$为正整数),$\therefore2a + 3 = 5m^{2}$,$\therefore a=\frac{5m^{2}-3}{2}$.又$\because a$为正整数,$\therefore5m^{2}-3$为偶数,$\therefore m$为奇数,$\therefore$当$m = 1$时,$a = 1$;当$m = 3$时,$a = 21$;当$m = 5$时,$a = 61.\therefore$满足条件的$a$的值为$1,21,61$(也可取$m$为其他正奇数,得出不同的答案)
上一页 下一页