1. 计算$(2\sqrt{3}+\sqrt{6})×\sqrt{2}$的结果为(
C
)
A.$4\sqrt{3}$
B.$6\sqrt{3}$
C.$2\sqrt{3}+2\sqrt{6}$
D.$4\sqrt{3}+2\sqrt{6}$
答案:1. C
解析:
$(2\sqrt{3}+\sqrt{6})×\sqrt{2}$
$=2\sqrt{3}×\sqrt{2}+\sqrt{6}×\sqrt{2}$
$=2\sqrt{6}+2\sqrt{3}$
$=2\sqrt{3}+2\sqrt{6}$
C
2. 下列各式计算正确的是(
C
)
A.$\sqrt{7}×(\sqrt{2}+\sqrt{5})=\sqrt{7}×\sqrt{7}=7$
B.$(\sqrt{5}+\sqrt{3})×(\sqrt{5}-\sqrt{2})=5-\sqrt{6}$
C.$(\sqrt{3}-\sqrt{2})×(\sqrt{3}+\sqrt{2})=3 - 2 = 1$
D.$(\sqrt{5}-\sqrt{3})^{2}=5 - 3 = 2$
答案:2. C
3. 计算:
(1)$(2025·河北)(\sqrt{10}+\sqrt{6})(\sqrt{10}-\sqrt{6})=$
4
;
(2)$(2 - 2\sqrt{3})^{2}=$
$16 - 8\sqrt{3}$
;
(3)$\sqrt{6}×\sqrt{3}-\sqrt{8}=$
$\sqrt{2}$
;
(4)$(\sqrt{48}-3\sqrt{\dfrac{1}{3}})÷\sqrt{3}=$
3
.
答案:$3. (1) 4 (2) 16 - 8\sqrt{3} (3) \sqrt{2} (4) 3$
解析:
(1) $(\sqrt{10}+\sqrt{6})(\sqrt{10}-\sqrt{6})=(\sqrt{10})^2 - (\sqrt{6})^2 = 10 - 6 = 4$
(2) $(2 - 2\sqrt{3})^{2}=2^2 - 2×2×2\sqrt{3}+(2\sqrt{3})^2 = 4 - 8\sqrt{3} + 12 = 16 - 8\sqrt{3}$
(3) $\sqrt{6}×\sqrt{3}-\sqrt{8}=\sqrt{18} - 2\sqrt{2}=3\sqrt{2} - 2\sqrt{2}=\sqrt{2}$
(4) $(\sqrt{48}-3\sqrt{\dfrac{1}{3}})÷\sqrt{3}=(4\sqrt{3} - \sqrt{3})÷\sqrt{3}=3\sqrt{3}÷\sqrt{3}=3$
4. 已知$x=\sqrt{5}+1$,$y=\sqrt{5}-1$,则$x^{2}-y^{2}$的值为
$4\sqrt{5}$
.
答案:$4. 4\sqrt{5}$
解析:
$x^{2}-y^{2}=(x+y)(x-y)$,
$x+y=(\sqrt{5}+1)+(\sqrt{5}-1)=2\sqrt{5}$,
$x-y=(\sqrt{5}+1)-(\sqrt{5}-1)=2$,
所以$x^{2}-y^{2}=2\sqrt{5}×2=4\sqrt{5}$。
5. 计算:
(1)$(2\sqrt{30}-\sqrt{24})×\sqrt{\dfrac{1}{6}}$;
(2)$(2025·青岛)\dfrac{\sqrt{18}+\sqrt{50}}{\sqrt{2}}-(\sqrt{3})^{0}$;
(3)$(3\sqrt{2}+\sqrt{6})×(\sqrt{6}-3\sqrt{2})$;
(4)$14\sqrt{\dfrac{1}{7}}-(\sqrt{7}+1)^{2}$.
答案:$5. (1) 2\sqrt{5} - 2 (2) 7 (3) - 12 (4) - 8$
解析:
(1)$(2\sqrt{30}-\sqrt{24})×\sqrt{\dfrac{1}{6}}$
$=2\sqrt{30}×\sqrt{\dfrac{1}{6}} - \sqrt{24}×\sqrt{\dfrac{1}{6}}$
$=2\sqrt{30×\dfrac{1}{6}} - \sqrt{24×\dfrac{1}{6}}$
$=2\sqrt{5} - \sqrt{4}$
$=2\sqrt{5} - 2$
(2)$\dfrac{\sqrt{18}+\sqrt{50}}{\sqrt{2}}-(\sqrt{3})^{0}$
$=\dfrac{\sqrt{18}}{\sqrt{2}} + \dfrac{\sqrt{50}}{\sqrt{2}} - 1$
$=\sqrt{\dfrac{18}{2}} + \sqrt{\dfrac{50}{2}} - 1$
$=\sqrt{9} + \sqrt{25} - 1$
$=3 + 5 - 1$
$=7$
(3)$(3\sqrt{2}+\sqrt{6})×(\sqrt{6}-3\sqrt{2})$
$=(\sqrt{6})^{2} - (3\sqrt{2})^{2}$
$=6 - 18$
$=-12$
(4)$14\sqrt{\dfrac{1}{7}}-(\sqrt{7}+1)^{2}$
$=14×\dfrac{\sqrt{7}}{7} - (7 + 2\sqrt{7} + 1)$
$=2\sqrt{7} - (8 + 2\sqrt{7})$
$=2\sqrt{7} - 8 - 2\sqrt{7}$
$=-8$
6. 已知$m = 1+\sqrt{2}$,$n = 1-\sqrt{2}$,则$\sqrt{m^{2}+n^{2}-3mn}$的值为(
C
)
A.$9$
B.$\pm3$
C.$3$
D.$5$
答案:6. C
解析:
已知$m = 1+\sqrt{2}$,$n = 1-\sqrt{2}$,则:
$m + n=(1+\sqrt{2})+(1-\sqrt{2})=2$,
$mn=(1+\sqrt{2})(1-\sqrt{2})=1 - (\sqrt{2})^{2}=1 - 2=-1$,
$m^{2}+n^{2}-3mn=(m + n)^{2}-5mn=2^{2}-5×(-1)=4 + 5=9$,
$\sqrt{m^{2}+n^{2}-3mn}=\sqrt{9}=3$。
答案:C
7. 计算$(2-\sqrt{5})^{2025}×(2+\sqrt{5})^{2026}$的结果为(
D
)
A.$2+\sqrt{5}$
B.$2-\sqrt{5}$
C.$-1$
D.$-2-\sqrt{5}$
答案:7. D
解析:
$\begin{aligned}&(2 - \sqrt{5})^{2025} × (2 + \sqrt{5})^{2026}\\=&(2 - \sqrt{5})^{2025} × (2 + \sqrt{5})^{2025} × (2 + \sqrt{5})\\=&[(2 - \sqrt{5})(2 + \sqrt{5})]^{2025} × (2 + \sqrt{5})\\=&(4 - 5)^{2025} × (2 + \sqrt{5})\\=&(-1)^{2025} × (2 + \sqrt{5})\\=&-1 × (2 + \sqrt{5})\\=&-2 - \sqrt{5}\end{aligned}$
D