9. 若$\vert a - 2\vert + b^{2} + 4 + \sqrt{4 - c} = 4b$,则$\sqrt{\dfrac{1}{a}} · \sqrt{3b} · \sqrt{c}$的值为
$2\sqrt{3}$
.
答案:9. $2\sqrt{3}$
解析:
解:$\vert a - 2\vert + b^{2} + 4 + \sqrt{4 - c} = 4b$,
移项得$\vert a - 2\vert + b^{2} - 4b + 4 + \sqrt{4 - c} = 0$,
即$\vert a - 2\vert + (b - 2)^{2} + \sqrt{4 - c} = 0$,
因为$\vert a - 2\vert \geq 0$,$(b - 2)^{2} \geq 0$,$\sqrt{4 - c} \geq 0$,
所以$a - 2 = 0$,$b - 2 = 0$,$4 - c = 0$,
解得$a = 2$,$b = 2$,$c = 4$,
则$\sqrt{\dfrac{1}{a}} · \sqrt{3b} · \sqrt{c} = \sqrt{\dfrac{1}{2}} · \sqrt{3×2} · \sqrt{4}$
$= \sqrt{\dfrac{1}{2}×6×4}$
$= \sqrt{12}$
$= 2\sqrt{3}$
$2\sqrt{3}$
10. (教材变式)计算:
(1)$\sqrt{\dfrac{3}{4}} × (-\sqrt{2\dfrac{2}{3}}) × \dfrac{1}{3}\sqrt{56}$;
(2)$5\sqrt{ab} · (-4\sqrt{a^{3}b})(a \geqslant 0,b \geqslant 0)$.
答案:10. (1) $-\frac{4\sqrt{7}}{3}$ (2) $-20a^{2}b$
解析:
解:原式$=\sqrt{\dfrac{3}{4}}×(-\sqrt{\dfrac{8}{3}})×\dfrac{1}{3}\sqrt{56}$
$=-\dfrac{1}{3}×\sqrt{\dfrac{3}{4}×\dfrac{8}{3}×56}$
$=-\dfrac{1}{3}×\sqrt{112}$
$=-\dfrac{1}{3}×4\sqrt{7}$
$=-\dfrac{4\sqrt{7}}{3}$
11. 化简:
(1)$\sqrt{81ab^{3}}(a \geqslant 0,b \geqslant 0)$;
(2)$\sqrt{(-21) × (-28)}$;
(3)$\sqrt{2x^{4}y + 4x^{2}y^{3} + 2y^{5}}(y \geqslant 0)$;
(4)$\sqrt{m^{3} - m^{2}n}(m < 0,m \geqslant n)$.
答案:11. (1) $9b\sqrt{ab}$ (2) $14\sqrt{3}$ (3) $(x^{2}+y^{2})\sqrt{2y}$ (4) $-m\sqrt{m-n}$
解析:
解:$\sqrt{2x^{4}y + 4x^{2}y^{3} + 2y^{5}}$
$=\sqrt{2y(x^{4} + 2x^{2}y^{2} + y^{4})}$
$=\sqrt{2y(x^{2} + y^{2})^{2}}$
$=(x^{2} + y^{2})\sqrt{2y}$
12. (1)已知一个菱形的两条对角线的长分别为$2\sqrt{5}\ \mathrm{cm}$,$5\sqrt{2}\ \mathrm{cm}$,求菱形的面积;
(2)已知一个长方体的长为$4\sqrt{18}$,宽为$2\sqrt{27}$,高为$\dfrac{1}{3}\sqrt{60}$,求这个长方体的体积.
答案:12. (1) $\frac{1}{2} × 2\sqrt{5} × 5\sqrt{2}=5\sqrt{10} (cm^{2}), ∴$ 菱形的面积为 $5\sqrt{10} cm^{2}$ (2) $4\sqrt{18} × 2\sqrt{27} × \frac{1}{3}\sqrt{60}=144\sqrt{10}, ∴$ 这个长方体的体积为 $144\sqrt{10}$
解析:
(1)菱形面积为两条对角线乘积的一半,即$\frac{1}{2} × 2\sqrt{5} × 5\sqrt{2} = 5\sqrt{10}\ \mathrm{cm}^2$,故菱形的面积为$5\sqrt{10}\ \mathrm{cm}^2$。
(2)长方体体积为长×宽×高,先化简各边长:$4\sqrt{18}=4×3\sqrt{2}=12\sqrt{2}$,$2\sqrt{27}=2×3\sqrt{3}=6\sqrt{3}$,$\frac{1}{3}\sqrt{60}=\frac{1}{3}×2\sqrt{15}=\frac{2}{3}\sqrt{15}$。则体积为$12\sqrt{2} × 6\sqrt{3} × \frac{2}{3}\sqrt{15}=12×6×\frac{2}{3}×\sqrt{2×3×15}=48×\sqrt{90}=48×3\sqrt{10}=144\sqrt{10}$,故长方体的体积为$144\sqrt{10}$。