8. 已知$\frac{x}{x^{2}+1}=\frac{1}{3}$,求$\frac{x^{2}}{x^{4}+x^{2}+1}$的值.
答案:8.由$\frac{x}{x^2 + 1} = \frac{1}{3}$,知$x \neq 0$,$\therefore \frac{x^2 + 1}{x} = 3$,即$x + \frac{1}{x} = 3$.两边同
时平方,得$x^2 + 2 + \frac{1}{x^2} = 9$,即$x^2 + \frac{1}{x^2} = 7$.$\therefore \frac{x^4 + x^2 + 1}{x^2} = x^2 +$
$1 + \frac{1}{x^2} = 8$.$\therefore \frac{x^2}{x^4 + x^2 + 1} = \frac{1}{8}$
9. 已知$\frac{
x}{2}=\frac{
y}{7}=\frac{
z}{5}$,则$\frac{x + y - z}{x}$的值为(
C
)
A.$\frac{1}{2}$
B.$-\frac{1}{2}$
C.2
D.$-2$
答案:9.C
解析:
设$\frac{x}{2}=\frac{y}{7}=\frac{z}{5}=k$,则$x = 2k$,$y = 7k$,$z = 5k$。
$\frac{x + y - z}{x}=\frac{2k + 7k - 5k}{2k}=\frac{4k}{2k}=2$
答案:C
10. 若$a:b=\frac{9}{25}:0.54$,$a:c=\frac{4}{5}:1\frac{1}{3}$,则$\frac{a + 3b - 2c}{b + c - a}$的值为
1
.
答案:10.1
解析:
$a:b=\frac{9}{25}:0.54=2:3$,设$a=2k$,则$b=3k$;$a:c=\frac{4}{5}:1\frac{1}{3}=3:5$,则$c=\frac{10}{3}k$。
$\frac{a + 3b - 2c}{b + c - a}=\frac{2k + 3×3k - 2×\frac{10}{3}k}{3k + \frac{10}{3}k - 2k}=\frac{2k + 9k - \frac{20}{3}k}{\frac{9}{3}k + \frac{10}{3}k - \frac{6}{3}k}=\frac{\frac{6}{3}k + \frac{27}{3}k - \frac{20}{3}k}{\frac{13}{3}k}=\frac{\frac{13}{3}k}{\frac{13}{3}k}=1$
1
11. 已知$a$,$b$,$c$满足$\frac{a}{2}=\frac{b - c}{3}=\frac{a + c}{5}$,求$\frac{a + c}{2a + b}$的值.
答案:11.设$\frac{a}{2} = \frac{b - c}{3} = \frac{a + c}{5} = k (k \neq 0)$,则$a = 2k$①,$b - c = 3k$②,
$a + c = 5k$③.①$+$②$+$③,得$2a + b = 10k$.$\therefore \frac{a + c}{2a + b} = \frac{5k}{10k} = \frac{1}{2}$
12. 已知$\frac{y + z}{x}=\frac{x + z}{y}=\frac{x + y}{z}$,其中$x + y + z\neq0$,求$\frac{x + y - z}{x + y + z}$的值.
答案:12.由题意,得$x$,$y$,$z$均不为$0$.设$\frac{y + z}{x} = \frac{x + z}{y} = \frac{x + y}{z} =$
$k (k \neq 0)$,则$\begin{cases} y + z = kx ①, \\ x + z = ky ②, \\ x + y = kz ③. \end{cases}$①$+$②$+$③,得$2x + 2y + 2z =$
$k (x + y + z)$.$\because x + y + z \neq 0$,$\therefore k = 2$.$\therefore \frac{x + y}{z} = 2$,即$x + y =$
$2z$.$\therefore$原式$= \frac{2z - z}{2z + z} = \frac{z}{3z} = \frac{1}{3}$