1. (2025·南充)已知$\frac{a}{bc}=\frac{b}{ac}=\frac{c}{ab}=2$,则$\frac{a^{2}+b^{2}+c^{2}}{abc}$的值是(
D
)
A.2
B.3
C.4
D.6
答案:1.D
解析:
由$\frac{a}{bc}=2$,得$a = 2bc$;由$\frac{b}{ac}=2$,得$b = 2ac$;由$\frac{c}{ab}=2$,得$c = 2ab$。
将$a = 2bc$代入$b = 2ac$,得$b = 2(2bc)c = 4bc^2$,$b \neq 0$,两边同除以$b$,$1 = 4c^2$,$c^2=\frac{1}{4}$,同理$a^2=\frac{1}{4}$,$b^2=\frac{1}{4}$。
$a = 2bc$,则$a^2 = 4b^2c^2$,$\frac{1}{4}=4×\frac{1}{4}× c^2$,$c^2=\frac{1}{4}$,同理$abc=\frac{1}{8}$($a,b,c$同号)。
$\frac{a^2 + b^2 + c^2}{abc}=\frac{\frac{1}{4}+\frac{1}{4}+\frac{1}{4}}{\frac{1}{8}}=\frac{\frac{3}{4}}{\frac{1}{8}}=6$
D
2. (2025·青海)先化简$(1-\frac{a}{a + 2})÷\frac{2}{a^{2}-4}$,再从$-2$,$0$,$1$中选一个合适的数作为$a$的值代入求值.
答案:2.原式$= ( \frac{a + 2}{a + 2} - \frac{a}{a + 2} ) · \frac{a^2 - 4}{2} = \frac{2}{a + 2} · \frac{(a + 2)(a - 2)}{2} =$
$a - 2$.由分母不能为$0$,得$a \neq \pm 2$.若选$0$作为$a$的值,则原式$=$
$0 - 2 = - 2$;若选$1$作为$a$的值,则原式$= 1 - 2 = - 1$
3. 若$x+\frac{1}{x}=\frac{13}{6}$,且$0\lt x\lt1$,则$x^{2}-\frac{1}{x^{2}}$的值为
$-\frac{65}{36}$
.
答案:3.$- \frac{65}{36}$ 解析:$\because 0 < x < 1$,$\therefore x < \frac{1}{x}$,$\therefore x - \frac{1}{x} < 0$.$\because x +$
$\frac{1}{x} = \frac{13}{6}$,$\therefore ( x + \frac{1}{x} )^2 = \frac{169}{36}$,即$x^2 + 2 + \frac{1}{x^2} = \frac{169}{36}$.$\therefore x^2 - 2 +$
$\frac{1}{x^2} = \frac{25}{36} - 4$.$\therefore ( x - \frac{1}{x} )^2 = \frac{25}{36}$.$\therefore x - \frac{1}{x} = - \frac{5}{6}$.$\therefore x^2 -$
$\frac{1}{x^2} = ( x + \frac{1}{x} )( x - \frac{1}{x} ) = \frac{13}{6} × ( - \frac{5}{6} ) = - \frac{65}{36}$.
4. 已知$y\gt x\gt0$,$x^{2}+y^{2}=4xy$,求$\frac{x + y}{x - y}$的值.
答案:4.$\because x^2 + y^2 = 4xy$,$\therefore x^2 + 2xy + y^2 = 6xy$,$x^2 - 2xy + y^2 =$
$2xy$.$\therefore (x + y)^2 = 6xy$,$(x - y)^2 = 2xy$.$\therefore \frac{(x + y)^2}{(x - y)^2} = \frac{6xy}{2xy}$,即
$( \frac{x + y}{x - y} )^2 = 3$.$\because y > x > 0$,$\therefore \frac{x + y}{x - y} < 0$.$\therefore \frac{x + y}{x - y} = - \sqrt{3}$
5. 若实数$x$满足$x^{2}+3x - 1 = 0$,则$\frac{x}{x^{2}-1}$的值为
$-\frac{1}{3}$
.
答案:5.$- \frac{1}{3}$
解析:
解:由$x^{2}+3x - 1 = 0$,得$x^{2}-1=-3x$。
则$\frac{x}{x^{2}-1}=\frac{x}{-3x}=-\frac{1}{3}$。
$-\frac{1}{3}$
6. (2024·北京)先化简,再求值:$\frac{3(a - 2b)+3b}{a^{2}-2ab + b^{2}}$,其中$a$,$b$满足$a - b - 1 = 0$.
答案:6.原式$= \frac{3}{a - b}$.$\because a - b - 1 = 0$,$\therefore a - b = 1$.$\therefore$原式$= 3$
解析:
解:原式$=\frac{3a - 6b + 3b}{(a - b)^2}=\frac{3a - 3b}{(a - b)^2}=\frac{3(a - b)}{(a - b)^2}=\frac{3}{a - b}$。
$\because a - b - 1 = 0$,$\therefore a - b = 1$。
$\therefore$原式$=\frac{3}{1}=3$。
7. 已知$\frac{1}{a}+\frac{1}{b}=\frac{1}{2}$,$\frac{1}{b}+\frac{1}{c}=\frac{1}{3}$,$\frac{1}{a}+\frac{1}{c}=\frac{1}{4}$,求$\frac{abc}{ab + bc + ac}$的值.
答案:7.$\because \frac{1}{a} + \frac{1}{b} = \frac{1}{2}$,$\frac{1}{b} + \frac{1}{c} = \frac{1}{3}$,$\therefore \frac{1}{a} + \frac{1}{c} = \frac{1}{4}$,$\therefore \frac{1}{a} + \frac{1}{b} +$
$\frac{1}{b} + \frac{1}{c} + \frac{1}{a} + \frac{1}{c} = \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$,即$\frac{2}{a} + \frac{2}{b} + \frac{2}{c} = \frac{13}{12}$.
$\therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{13}{24}$.根据题意,得$abc \neq 0$,$\therefore \frac{abc}{ab + bc + ac} =$
$\frac{abc ÷ abc}{(ab + bc + ac) ÷ abc} = \frac{1}{\frac{1}{c} + \frac{1}{a} + \frac{1}{b}} = \frac{24}{13}$