22. (8分)如图,在$□ ABCD$中,$E$是$AD$的中点,连接$CE$并延长,交$BA$的延长线于点$F$.
(1) 求证:$AF=AB$;
(2) 若$G$是线段$AF$上一点,满足$\angle FCG=\angle FCD$,$CG$交$AD$于点$H$,$AG=2$,$FG=6$,求$CH$的长.

答案:22.(1)$\because$四边形$ABCD$是平行四边形,$\therefore AD// BC$,$CD// AB$。$\therefore \angle D = \angle FAD$,$\angle DCE = \angle F$。$\because E$是$AD$的中点,$\therefore DE = AE$。$\therefore \triangle CDE\cong\triangle FAE$。$\therefore CE = FE$。$\because AE// BC$,$\therefore \frac{FA}{AB}=\frac{FE}{CE}=1$。$\therefore AF = AB$。(2)$\because AG = 2$,$FG = 6$,$\therefore AF = FG + AG = 6 + 2 = 8$。$\therefore AB = AF = 8$。$\because$四边形$ABCD$是平行四边形,$\therefore CD = AB = 8$,$DC// AB$。$\therefore \angle DCF = \angle F$。$\because \angle FCG = \angle FCD$,$\therefore \angle FCG = \angle F$。$\therefore CG = FG = 6$。$\because CD// AF$,$\therefore \triangle DCH\sim\triangle AGH$。$\therefore \frac{CD}{GA}=\frac{CH}{GH}$,即$\frac{8}{2}=\frac{6 - GH}{GH}$。$\therefore GH = 1.2$。$\therefore CH = CG - GH = 6 - 1.2 = 4.8$。
解析:
(1)证明:
∵四边形$ABCD$是平行四边形,
∴$AD// BC$,$CD// AB$,
∴$\angle D=\angle FAD$,$\angle DCE=\angle F$,
∵$E$是$AD$的中点,
∴$DE=AE$,
在$\triangle CDE$和$\triangle FAE$中,
$\left\{\begin{array}{l}\angle DCE=\angle F\\\angle D=\angle FAD\\DE=AE\end{array}\right.$,
∴$\triangle CDE\cong\triangle FAE(AAS)$,
∴$CE=FE$,
∵$AE// BC$,
∴$\frac{FA}{AB}=\frac{FE}{CE}=1$,
∴$AF=AB$。
(2)解:
∵$AG=2$,$FG=6$,
∴$AF=FG+AG=6+2=8$,
由(1)知$AF=AB$,
∴$AB=8$,
∵四边形$ABCD$是平行四边形,
∴$CD=AB=8$,$DC// AB$,
∴$\angle DCF=\angle F$,
∵$\angle FCG=\angle FCD$,
∴$\angle FCG=\angle F$,
∴$CG=FG=6$,
∵$CD// AF$,
∴$\triangle DCH\sim\triangle AGH$,
∴$\frac{CD}{GA}=\frac{CH}{GH}$,
设$GH=x$,则$CH=6-x$,
∴$\frac{8}{2}=\frac{6-x}{x}$,
解得$x=1.2$,
∴$CH=6-1.2=4.8$。
23. (8分)如图,$\triangle ABC$是$\odot O$的内接三角形,$AB$是$\odot O$的直径,$AC=\sqrt{5}$,$BC=2\sqrt{5}$,点$F$在$AB$上,连接$CF$并延长,交$\odot O$于点$D$,连接$BD$,过点$B$作$BE\perp CD$,垂足为$E$.
(1) 求证:$\triangle DBE \backsim \triangle ABC$;
(2) 若$AF=2$,求$DE$的长.

答案:23.(1)$\because AB$是$\odot O$的直径,$\therefore \angle ACB = 90^{\circ}$。$\because BE\perp CD$,$\therefore \angle BED = 90^{\circ}=\angle BCA$。又$\because \overset{\frown}{BC}=\overset{\frown}{BC}$,$\therefore \angle D = \angle A$。$\therefore \triangle DBE\sim\triangle ABC$。(2)过点$C$作$CG\perp AB$,垂足为$G$。$\because \angle ACB = 90^{\circ}$,$AC = \sqrt{5}$,$BC = 2\sqrt{5}$,$\therefore AB=\sqrt{AC^{2}+BC^{2}}=\sqrt{(\sqrt{5})^{2}+(2\sqrt{5})^{2}}=5$。$\because CG\perp AB$,$\therefore \angle AGC = 90^{\circ}=\angle ACB$。又$\because \angle A = \angle A$,$\therefore \triangle ACG\sim\triangle ABC$。$\therefore \frac{AG}{AC}=\frac{AC}{AB}$。$\therefore \frac{AG}{\sqrt{5}}=\frac{\sqrt{5}}{5}$。$\therefore AG = 1$。$\because AF = 2$,$\therefore FG = AG = 1$。$\therefore AC = FC$。$\therefore \angle A = \angle CFA = \angle BFD = \angle D$。$\therefore BD = BF = AB - AF = 5 - 2 = 3$。$\because \triangle DBE\sim\triangle ABC$,$\therefore \frac{BD}{BA}=\frac{DE}{AC}$。$\therefore \frac{3}{5}=\frac{DE}{\sqrt{5}}$。$\therefore DE=\frac{3\sqrt{5}}{5}$。
解析:
(1) 证明:
∵ $AB$ 是 $\odot O$ 的直径,
∴ $\angle ACB = 90°$。
∵ $BE \perp CD$,
∴ $\angle BED = 90° = \angle ACB$。
∵ $\overset{\frown}{BC} = \overset{\frown}{BC}$,
∴ $\angle D = \angle A$。
∴ $\triangle DBE \backsim \triangle ABC$。
(2) 解:
∵ $\angle ACB = 90°$,$AC = \sqrt{5}$,$BC = 2\sqrt{5}$,
∴ $AB = \sqrt{AC^2 + BC^2} = \sqrt{(\sqrt{5})^2 + (2\sqrt{5})^2} = 5$。
过点 $C$ 作 $CG \perp AB$ 于 $G$,
∵ $\angle AGC = 90° = \angle ACB$,$\angle A = \angle A$,
∴ $\triangle ACG \backsim \triangle ABC$。
∴ $\frac{AG}{AC} = \frac{AC}{AB}$,即 $\frac{AG}{\sqrt{5}} = \frac{\sqrt{5}}{5}$,
解得 $AG = 1$。
∵ $AF = 2$,
∴ $FG = AF - AG = 2 - 1 = 1$,
∴ $AG = FG$,即 $CG$ 垂直平分 $AF$,
∴ $AC = FC$,$\angle A = \angle CFA$。
∵ $\angle CFA = \angle BFD$,$\angle A = \angle D$,
∴ $\angle BFD = \angle D$,
∴ $BD = BF = AB - AF = 5 - 2 = 3$。
∵ $\triangle DBE \backsim \triangle ABC$,
∴ $\frac{BD}{BA} = \frac{DE}{AC}$,即 $\frac{3}{5} = \frac{DE}{\sqrt{5}}$,
解得 $DE = \frac{3\sqrt{5}}{5}$。
24. (10分)
(1) 如图①,$\triangle ABC \backsim \triangle ADE$,求证:$\triangle ABD \backsim \triangle ACE$.
(2) 如图②,在$\triangle ABC$和$\triangle ADE$中,$\angle BAC=\angle DAE=90°$,$\angle ABC=\angle ADE=30°$,$AC$与$DE$相交于点$F$,点$D$在边$BC$上,$\frac{AD}{BD}=\sqrt{3}$.求$\frac{DF}{CF}$的值.
(3) 如图③,$D$是$\triangle ABC$内一点,$\angle BAD=\angle CBD=30°$,$\angle BDC=90°$,$AD=\sqrt{5}$,$AC=2\sqrt{3}$.求$AB$的长.

答案:24.(1)$\because \triangle ABC\sim\triangle ADE$,$\therefore \frac{AB}{AD}=\frac{AC}{AE}$,$\angle BAC = \angle DAE$。$\therefore \frac{AB}{AC}=\frac{AD}{AE}$,$\angle BAC - \angle DAC = \angle DAE - \angle DAC$,即$\angle BAD = \angle CAE$。$\therefore \triangle ABD\sim\triangle ACE$。(2)连接$EC$。$\because \angle BAC = \angle DAE = 90^{\circ}$,$\angle ABC = \angle ADE = 30^{\circ}$,$\therefore \triangle ABC\sim\triangle ADE$。由(1),同理,得$\triangle ABD\sim\triangle ACE$。$\therefore \frac{AD}{AE}=\frac{BD}{CE}$,$\angle ABD = \angle ACE = \angle ADE$。$\therefore \frac{AD}{BD}=\frac{AE}{CE}=\sqrt{3}$。在$Rt\triangle ADE$中,$\angle ADE = 30^{\circ}$,$\therefore$易得$\frac{AD}{AE}=\sqrt{3}$。$\therefore \frac{AD}{EC}=\frac{AD}{AE}· \frac{AE}{CE}=\sqrt{3}×\sqrt{3}=3$。$\because \angle ADF = \angle ECF = 30^{\circ}$,$\angle AFD = \angle EFC$,$\therefore \triangle ADF\sim\triangle ECF$。$\therefore \frac{DF}{CF}=\frac{AD}{EC}=3$。(3)如图,过点$A$作$AB$的垂线,过点$D$作$AD$的垂线,两垂线交于点$M$,连接$BM$,则$\angle BAM = \angle ADM = 90^{\circ}$。$\because \angle BAD = 30^{\circ}$,$\therefore \angle DAM = 60^{\circ}$。$\therefore \angle AMD = 30^{\circ}$。$\therefore$在$Rt\triangle ADM$中,$AM = 2AD = 2\sqrt{5}$,$DM = \sqrt{AM^{2}-AD^{2}}=\sqrt{(2\sqrt{5})^{2}-(\sqrt{5})^{2}}=\sqrt{15}$。$\because \angle ADM = \angle BDC = 90^{\circ}$,$\angle AMD = \angle CBD = 30^{\circ}$,$\therefore \triangle ADM\sim\triangle CDB$。$\therefore \frac{MD}{BD}=\frac{DA}{CD}$。$\therefore \frac{BD}{CD}=\frac{DM}{DA}$。又$\because \angle BDC = \angle MDA$,$\therefore \angle BDC + \angle CDM = \angle MDA + \angle CDM$,即$\angle BDM = \angle CDA$。$\therefore \triangle BDM\sim\triangle CDA$。$\therefore \frac{BM}{CA}=\frac{DM}{DA}=\frac{\sqrt{15}}{\sqrt{5}}=\sqrt{3}$。$\because AC = 2\sqrt{3}$,$\therefore BM = \sqrt{3}AC=\sqrt{3}×2\sqrt{3}=6$。$\therefore$在$Rt\triangle ABM$中,$AB=\sqrt{BM^{2}-AM^{2}}=\sqrt{6^{2}-(2\sqrt{5})^{2}}=4$。
