答案:$8\sqrt{3}$ 解析:设点B的坐标为$(m, \frac{k}{m})$,则C$(m, 0)$.
∵A(2,0),
∴$AC = m - 2$.由对称,可知$AD = m - 2$,∠DAB = ∠CAB = 30°.
∴∠DAC = 60°.如图,过点D作DG⊥x轴,垂足为G.
∴$AG = \frac{m - 2}{2}$,$DG = \frac{\sqrt{3}m - 2\sqrt{3}}{2}$.
∴D$(\frac{m - 2}{2} + 2, \frac{\sqrt{3}m - 2\sqrt{3}}{2})$.
∵点D在反比例函数的图象上,
∴$(\frac{m - 2}{2} + 2) × (\frac{\sqrt{3}m - 2\sqrt{3}}{2}) = k$①.在Rt△ABC中,
∵∠BAC = 30°,
∴$BC = \frac{\sqrt{3}}{3}AC$,即$\frac{k}{m} = \frac{\sqrt{3}}{3}(m - 2)$②.由①②,得$k = 8\sqrt{3}$.
