答案:D 解析:如图,过点E作EM⊥OC于点M,则EM//AC,
∴△OME∽△OCA.
∴$\frac{OM}{OC}$=$\frac{EM}{AC}$=$\frac{OE}{OA}$.
∵点E在反比例函数$y = \frac{k}{x}$位于第一象限的图象上,
∴设点E的坐标为$(a, \frac{k}{a})$.
∴$OM = a$,$EM = \frac{k}{a}$.
∵$OE = 2AE$,
∴$\frac{OM}{OC} = \frac{EM}{AC} = \frac{2}{3}$.
∴$OC = \frac{3}{2}a$,$AC = \frac{3}{2} · \frac{k}{a}$.
∴$S_{矩形OBAC} = S_{△OBD} + S_{△OCF} + S_{四边形ODAF} = \frac{3}{2}a · \frac{3}{2} · \frac{k}{a}$,即$\frac{k}{2} + \frac{k}{2} + 2 = \frac{3}{2}a · \frac{3}{2} · \frac{k}{a}$,解得$k = \frac{8}{5}$.
