22. (8分)如图,某景区内两条互相垂直的道路$a$,$b$交于点$M$,景点$A$,$B$在道路$a$上,景点$C$在道路$b$上.为了进一步提升景区品质,景区管委会在道路$b$上又开发了风景优美的景点$D$.测得景点$C$位于景点$B$的北偏东$60^{\circ}$方向上,位于景点$A$的北偏东$30^{\circ}$方向上,景点$B$位于景点$D$的南偏西$45^{\circ}$方向上.已知$AB=800 m$.求:
(1) $\angle ACB$的度数;
(2) 景点$C$与景点$D$之间的距离(结果保留根号).

答案:22. (1)如图,标记点E,F.由题意,得$\angle CBE=60^{\circ}$,$\angle CAF=30^{\circ}$,$\angle BDM=45^{\circ}$,$BM\perp DM$,$BE// AF// DM$,$\therefore \angle BCM=\angle CBE=60^{\circ}$,$\angle ACM=\angle CAF=30^{\circ}$.$\therefore \angle ACB=\angle BCM-\angle ACM=60^{\circ}-30^{\circ}=30^{\circ}$ (2)$\because \angle CBE=60^{\circ}$,$\therefore \angle CBM=90^{\circ}-\angle CBE=90^{\circ}-60^{\circ}=30^{\circ}$.由(1)得$\angle ACB=30^{\circ}$,$\therefore \angle ABC=\angle ACB=30^{\circ}$.又$\because AB=800m$,$\therefore AB=AC=800m$.在Rt$\triangle ACM$中,$\sin\angle ACM=\frac{AM}{AC}$,$\cos\angle ACM=\frac{CM}{AC}$,$\therefore AM=AC·\sin\angle ACM=800×\sin30^{\circ}=800×\frac{1}{2}=400(m)$,$CM=AC·\cos\angle ACM=800×\cos30^{\circ}=800×\frac{\sqrt{3}}{2}=400\sqrt{3}(m)$.$\therefore BM=BA+AM=800+400=1200(m)$.$\because \angle BDM=45^{\circ}$,$BM\perp DM$,$\therefore DM=\frac{BM}{\tan\angle BDM}=1200m$.$\therefore DC=DM-CM=(1200-400\sqrt{3})m$.$\therefore$景点C与景点D之间的距离为$(1200-400\sqrt{3})m$

23. (8分)如图,$\odot O$是$\triangle ABC$的外接圆,直径$DE\perp AC$,垂足为$F$,连接$AD$,$BD$.
(1) 求证:$\angle ABD=\angle DAC$;
(2) 若$\tan\angle ABD=2$,$\odot O$的半径为5,求$AC$的长.

答案:23. (1)如图,连接DC.$\because$直径$DE\perp AC$,$\therefore AF=CF$.$\therefore DA=DC$.$\therefore \angle DAC=\angle DCA$.又$\because \angle DBA=\angle DCA$,$\therefore \angle ABD=\angle DAC$ (2)如图,连接OA.$\because \tan\angle ABD=2$,$\angle ABD=\angle DAC$,$\therefore \tan\angle DAC=2$,即$\frac{DF}{AF}=2$.设$AF=x$,则$DF=2x$,$OF=2x-5$.在Rt$\triangle AOF$中,$OA^{2}=OF^{2}+AF^{2}$,即$5^{2}=(2x-5)^{2}+x^{2}$,解得$x_1=0$(不合题意,舍去),$x_2=4$.$\therefore AF=4$.$\because$直径$DE\perp AC$,$\therefore AC=2AF=8$.

24. (10分)如图,直线$y=k_{1}x+b$与双曲线$y=\frac{k_{2}}{x}$交于$A$,$B$两点.已知点$B$的纵坐标为$-3$,直线$AB$与$x$轴交于点$C$,与$y$轴交于点$D(0,-2)$,$OA=\sqrt{5}$,$\tan\angle AOC=\frac{1}{2}$.
(1) 求直线$AB$对应的函数解析式;
(2) 若$P$是第二象限内双曲线$y=\frac{k_{2}}{x}$上的一点,$\triangle OCP$的面积是$\triangle ODB$面积的2倍,求点$P$的坐标;
(3) 直接写出关于$x$的不等式$k_{1}x+b\leq\frac{k_{2}}{x}$的解集.

答案:24. (1)过点A作$AE\perp x$轴于点E.$\therefore \angle AEO=90^{\circ}$.在Rt$\triangle AOE$中,$\tan\angle AOC=\frac{AE}{OE}=\frac{1}{2}$,设$AE=m$,$m>0$,则$OE=2m$.根据勾股定理,得$AE^{2}+OE^{2}=OA^{2}$,即$m^{2}+(2m)^{2}=(\sqrt{5})^{2}$,解得$m=1$或$m=-1$(不合题意,舍去).$\therefore AE=1$,$OE=2$.$\therefore A(-2,1)$.$\because$点A在双曲线$y=\frac{k_2}{x}$上,$\therefore k_2=-2×1=-2$.$\therefore y=-\frac{2}{x}$.$\because$点B在双曲线上,且纵坐标为$-3$,$\therefore -3=-\frac{2}{x}$,解得$x=\frac{2}{3}$.$\therefore B(\frac{2}{3},-3)$.$\because$点A$(-2,1)$,$B(\frac{2}{3},-3)$在直线$y=k_1x+b$上,$\therefore \begin{cases}-2k_1+b=1\frac{2}{3}k_1+b=-3\end{cases}$,解得$\begin{cases}k_1=-\frac{3}{2}\\b=-2\end{cases}$.$\therefore$直线AB对应的函数解析式为$y=-\frac{3}{2}x-2$ (2)$\because D(0,-2)$,$\therefore OD=2$.由(1)知,$B(\frac{2}{3},-3)$,$\therefore S_{\triangle ODB}=\frac{1}{2}OD· x_B=\frac{1}{2}×2×\frac{2}{3}=\frac{2}{3}$.$\because \triangle OCP$的面积是$\triangle ODB$面积的2倍,$\therefore S_{\triangle OCP}=2S_{\triangle ODB}=2×\frac{2}{3}=\frac{4}{3}$.在$y=-\frac{3}{2}x-2$中,令$y=0$,则$-\frac{3}{2}x-2=0$,解得$x=-\frac{4}{3}$.$\therefore OC=\frac{4}{3}$.设点P的纵坐标为$n(n>0)$,$\therefore S_{\triangle OCP}=\frac{1}{2}OC· y_P=\frac{1}{2}×\frac{4}{3}n=\frac{4}{3}$,解得$n=2$.$\because$点P在双曲线$y=-\frac{2}{x}$上,$\therefore 2=-\frac{2}{x}$,解得$x=-1$.$\therefore$点P的坐标为$(-1,2)$ (3)$-2\leq x<0$或$x\geq\frac{2}{3}$
解析:
(1)过点$A$作$AE\perp x$轴于点$E$,则$\angle AEO = 90°$。在$Rt\triangle AOE$中,$\tan\angle AOC=\frac{AE}{OE}=\frac{1}{2}$,设$AE = m(m>0)$,则$OE = 2m$。由勾股定理得$m^2+(2m)^2=(\sqrt{5})^2$,解得$m = 1$,$\therefore AE=1$,$OE = 2$,$A(-2,1)$。
点$A$在双曲线$y=\frac{k_2}{x}$上,$\therefore k_2=-2×1=-2$,双曲线解析式为$y=-\frac{2}{x}$。
点$B$在双曲线上,纵坐标为$-3$,$\therefore -3=-\frac{2}{x}$,解得$x=\frac{2}{3}$,$\therefore B(\frac{2}{3},-3)$。
点$A(-2,1)$,$B(\frac{2}{3},-3)$在直线$y=k_1x + b$上,$\begin{cases}-2k_1 + b=1\\frac{2}{3}k_1 + b=-3\end{cases}$,解得$\begin{cases}k_1=-\frac{3}{2}\\b=-2\end{cases}$,直线$AB$解析式为$y=-\frac{3}{2}x-2$。
(2)$D(0,-2)$,$\therefore OD = 2$,$B(\frac{2}{3},-3)$,$S_{\triangle ODB}=\frac{1}{2}×2×\frac{2}{3}=\frac{2}{3}$。
$S_{\triangle OCP}=2×\frac{2}{3}=\frac{4}{3}$,在$y=-\frac{3}{2}x-2$中,令$y = 0$,得$x=-\frac{4}{3}$,$\therefore OC=\frac{4}{3}$。
设$P$纵坐标为$n(n>0)$,$\frac{1}{2}×\frac{4}{3}n=\frac{4}{3}$,解得$n = 2$。点$P$在双曲线$y=-\frac{2}{x}$上,$2=-\frac{2}{x}$,解得$x=-1$,$\therefore P(-1,2)$。
(3)$-2\leq x<0$或$x\geq\frac{2}{3}$