16. 如图,在$2×2$的网格中,以顶点$O$为圆心,2个单位长度为半径作圆弧,分别交图中格点(网格线的交点)、格线于$B$,$A$两点,连接$AB$,$OB$,则$\tan\angle ABO$的值为
2+√3
.

答案:16.2+√3
17. 如图,点$E$在矩形$ABCD$的边$AB$上,将$\triangle ADE$沿$DE$翻折,点$A$恰好落在$BC$边上的点$F$处.若$CD=3BF$,则$\sin\angle EDF=$
√10/10
.

答案:17.√10/10
解析:
解:设 $ BF = x $,则 $ CD = 3x $。
因为四边形 $ ABCD $ 是矩形,所以 $ AB = CD = 3x $,$ AD = BC $,$ \angle B = \angle C = \angle A = 90° $。
由折叠性质得:$ AD = DF $,$ AE = EF $,$ \angle ADE = \angle FDE $。
设 $ AD = DF = BC = y $,则 $ CF = BC - BF = y - x $。
在 $ Rt\triangle DCF $ 中,$ DC^2 + CF^2 = DF^2 $,即 $ (3x)^2 + (y - x)^2 = y^2 $,解得 $ y = 5x $,所以 $ CF = 5x - x = 4x $。
设 $ AE = EF = z $,则 $ BE = AB - AE = 3x - z $。
在 $ Rt\triangle BEF $ 中,$ BE^2 + BF^2 = EF^2 $,即 $ (3x - z)^2 + x^2 = z^2 $,解得 $ z = \frac{5}{3}x $,所以 $ AE = \frac{5}{3}x $。
在 $ Rt\triangle ADE $ 中,$ \tan\angle ADE = \frac{AE}{AD} = \frac{\frac{5}{3}x}{5x} = \frac{1}{3} $。
设 $ AE = k $,则 $ AD = 3k $,由勾股定理得 $ DE = \sqrt{AE^2 + AD^2} = \sqrt{k^2 + (3k)^2} = \sqrt{10}k $。
所以 $ \sin\angle ADE = \frac{AE}{DE} = \frac{k}{\sqrt{10}k} = \frac{\sqrt{10}}{10} $,即 $ \sin\angle EDF = \frac{\sqrt{10}}{10} $。
$\frac{\sqrt{10}}{10}$
18. 如图,四边形$ABCD$的对角线$AC$平分$\angle BAD$,$ED\perp AD$,$BC\perp AC$,且$\cos\angle CBE=\frac{15}{16}$,$\angle ABE=30^{\circ}$,则$\frac{AD}{AC}$的值为
8/15
.

答案:18.8/15 解析:过点E作$EF\perp AB$,垂足为F.$\because$AC平分$\angle BAD$,$ED\perp AD$,$\therefore \angle DAE=\angle CAB$,$EF=ED$.$\because \angle EFB=90^{\circ}$,$\angle ABE=30^{\circ}$,$\therefore BE=2EF$.$\because BC\perp AC$,$\therefore \angle BCA=\angle EDA=90^{\circ}$.$\because \cos\angle CBE=\frac{BC}{BE}=\frac{15}{16}$,$\therefore \frac{BC}{DE}=\frac{15}{8}$,即$\frac{DE}{BC}=\frac{8}{15}$.$\because \angle EAD=\angle BAC$,$\angle ADE=\angle ACB=90^{\circ}$,$\therefore \triangle ADE\sim\triangle ACB$.$\therefore \frac{AD}{AC}=\frac{DE}{CB}=\frac{8}{15}$.
19. (6分)计算:$2\sin30^{\circ}+\tan45^{\circ}+\cos^{2}30^{\circ}-\sin^{2}45^{\circ}$.
答案:19.$\frac{9}{4}$
解析:
$2\sin30^{\circ}+\tan45^{\circ}+\cos^{2}30^{\circ}-\sin^{2}45^{\circ}$
$=2×\frac{1}{2}+1+\left(\frac{\sqrt{3}}{2}\right)^{2}-\left(\frac{\sqrt{2}}{2}\right)^{2}$
$=1 + 1+\frac{3}{4}-\frac{2}{4}$
$=2+\frac{1}{4}$
$=\frac{9}{4}$
20. (6分)如图,在$\triangle ABC$中,$\angle C=90^{\circ}$,$AC=8\sqrt{5}$,$AD$平分$\angle BAC$,$AD=\frac{16\sqrt{15}}{3}$,解这个直角三角形$ABC$.

答案:20.在Rt$\triangle ACD$中,$\because \cos\angle CAD=\frac{AC}{AD}=\frac{8\sqrt{5}}{16\sqrt{15}}=\frac{\sqrt{3}}{2}$,$\therefore \angle CAD=30^{\circ}$.$\because$AD平分$\angle BAC$,$\therefore \angle BAC=2\angle CAD=60^{\circ}$.$\therefore \angle B=90^{\circ}-\angle BAC=30^{\circ}$.$\therefore$在Rt$\triangle ACB$中,$AB=\frac{AC}{\sin B}=16\sqrt{5}$,$BC=\frac{AC}{\tan B}=8\sqrt{15}$.
21. (8分)如图,在$□ ABCD$中,$O$是对角线$AC$,$BD$的交点,$BE\perp AC$,$DF\perp AC$,垂足分别为$E$,$F$.
(1) 求证:$OE=OF$;
(2) 若$BE=5$,$OF=2$,求$\tan\angle OBE$的值.

答案:21. (1)$\because$四边形ABCD是平行四边形,$\therefore OB=OD$.$\because BE\perp AC$,$DF\perp AC$,$\therefore \angle OEB=\angle OFD=90^{\circ}$.在$\triangle OEB$和$\triangle OFD$中,$\begin{cases}\angle OEB=\angle OFD\\\angle BOE=\angle DOF\\OB=OD\end{cases}$,$\therefore \triangle OEB\cong\triangle OFD$.$\therefore OE=OF$.
(2)由(1),得$OE=OF$.$\because OF=2$,$\therefore OE=2$.在Rt$\triangle OEB$中,$\tan\angle OBE=\frac{OE}{BE}=\frac{2}{5}$.