1. 计算:
(1) (2025·泰州期末) $-1^{4}-[2-(-3)^{2}]$;
(2) (2025·南通期末) $-2^{2}×5-(-2)^{3}÷4$;
(3) (2024·苏州期末) $2\frac {2}{5}+2\frac {1}{7}+(-5\frac {1}{7})-(-5\frac {3}{5})$;
(4) (2025·宿迁期末) $(-\frac {1}{2}+\frac {5}{6}-\frac {7}{12})÷(-\frac {1}{24})$;
(5) (2025·宿迁期末) $(-1)^{2025}÷(\frac {1}{3})^{2}+(6-3^{2})$;
(6) (2024·宿迁期末) $\frac {9}{2}×[-3^{2}×(-\frac {1}{3})^{2}-0.8]÷(-2\frac {1}{4})$。
答案:1. (1) 原式$=-1-(2-9)=-1+7=6$.
(2) 原式$=-4×5-(-8)÷4=-20-(-2)=-18$.
(3) 原式$=2+\frac {2}{5}+2+\frac {1}{7}-5-\frac {1}{7}+5+\frac {3}{5}=5$.
(4) 原式$=(-\frac {1}{2}+\frac {5}{6}-\frac {7}{12})×(-24)=-\frac {1}{2}×(-24)+\frac {5}{6}×(-24)-\frac {7}{12}×(-24)=12-20+14=6$.
(5) 原式$=-1÷\frac {1}{9}+(6-9)=-1×9-3=-9-3=-12$.
(6) 原式$=\frac {9}{2}×(-9×\frac {1}{9}-0.8)÷(-\frac {9}{4})=\frac {9}{2}×(-1-0.8)×(-\frac {4}{9})=\frac {9}{2}×1.8×\frac {4}{9}=3.6$.
2. 解方程:
(1) (2025·宿迁期末) $8-3x= 3+2x$;
(2) (2025·南京期末) $2(2x+1)= 1-5(x-2)$;
(3) (2025·盐城期末) $\frac {2x+1}{3}= \frac {5x-1}{6}$;
(4) (2025·南京期末) $5(x-1)-2(1-x)= 3+2x$;
(5) (2025·泰州期末) $x-\frac {x-1}{2}= 2-\frac {x+2}{3}$;
(6) (2024·无锡期末) $\frac {x-3}{2}+\frac {3x+1}{5}= \frac {2x-1}{3}-1$。
答案:2. (1) 移项:$-3x-2x=-8+3$; 合并同类项:$-5x=-5$; 系数化为 1:$x=1$.
(2) 去括号:$4x+2=1-5x+10$; 移项、合并同类项:$9x=9$; 系数化为 1:$x=1$.
(3) 去分母:$2(2x+1)=5x-1$; 去括号:$4x+2=5x-1$; 移项、合并同类项:$-x=-3$; 系数化为 1:$x=3$.
(4) 去括号:$5x-5-2+2x=3+2x$; 移项、合并同类项:$5x=10$, 系数化为 1:$x=2$.
(5) 去分母:$6x-3(x-1)=12-2(x+2)$; 去括号:$6x-3x+3=12-2x-4$; 移项、合并同类项:$5x=5$; 系数化为 1:$x=1$.
(6) 去分母:$15(x-3)+6(3x+1)=10(2x-1)-30$; 去括号:$15x-45+18x+6=20x-10-30$; 移项、合并同类项:$13x=-1$; 系数化为 1:$x=-\frac {1}{13}$.