19. (12分)(2024·南京校级月考)已知直线$l_1 // l_2$,A为直线$l_1$上的一个定点,过点A的直线交$l_2$于点B,点C在线段BA的延长线上.D,E为直线$l_2$上的两个动点,点D在点E的左侧,连接AD,AE,满足$∠AED = ∠DAE$.点M在$l_2$上,且在点B的左侧,点N在直线$l_1$上.
(1)如图①,若$∠BAD = 25^{\circ}$,$∠AED = 50^{\circ}$,直接写出$∠ABM$的度数为______$^{\circ}$.
(2)射线AF为$∠CAD$的平分线.
①如图②,当点D在点B右侧时,用等式表示$∠EAF与∠ABD$之间的数量关系,并说明理由;
②当点D与点B不重合,且$∠ABM + ∠EAF = 150^{\circ}$时,直接写出$∠EAF$的度数为______.

答案:(1) 125 解析:如图①所示,因为 $ l_1 // l_2 $,所以 $ \angle ABM = \angle BAN $, $ \angle NAE = \angle AED = 50^{\circ} $.因为 $ \angle BAD = 25^{\circ} $, $ \angle DAE = \angle AED = 50^{\circ} $,所以 $ \angle ABM = \angle BAN = \angle BAD + \angle DAE + \angle NAE = 25^{\circ} + 50^{\circ} + 50^{\circ} = 125^{\circ} $. (2) ① $ \angle ABD = 2 \angle EAF $. 理由:因为 $ l_1 // l_2 $,所以 $ \angle CAN = \angle ABD $, $ \angle NAE = \angle AED $. 又因为 $ AF $ 平分 $ \angle CAD $,所以 $ \angle DAF = \angle CAF = \frac{1}{2} \angle CAD $. 因为 $ \angle DAE = \angle AED = \angle NAE $,所以 $ \angle DAE = \frac{1}{2} ( \angle DAE + \angle NAE ) = \frac{1}{2} \angle DAN $,所以 $ \angle EAF = \angle DAF - \angle DAE = \frac{1}{2} \angle CAD - \frac{1}{2} \angle DAN = \frac{1}{2} \angle CAN = \frac{1}{2} \angle ABD $. 即 $ \angle ABD = 2 \angle EAF $.

② $ 30^{\circ} $ 或 $ 110^{\circ} $ 解析:Ⅰ. 如图②所示,点 $ D $ 在点 $ B $ 右侧,此时有 $ \angle EAF = \frac{1}{2} \angle ABD $,因为 $ \angle ABM + \angle EAF = 150^{\circ} $,所以 $ \angle ABM + \frac{1}{2} \angle ABD = 150^{\circ} $. 又因为 $ \angle ABM + \angle ABD = 180^{\circ} $,所以 $ \frac{1}{2} \angle ABD = 180^{\circ} - 150^{\circ} = 30^{\circ} $,所以 $ \angle EAF = 30^{\circ} $. Ⅱ. 如图③所示,点 $ D $ 在点 $ B $ 左侧,点 $ E $ 在点 $ B $ 右侧,因为 $ AF $ 平分 $ \angle CAD $,所以 $ \angle DAF = \frac{1}{2} \angle CAD $. 因为 $ l_1 // l_2 $,所以 $ \angle AED = \angle NAE $, $ \angle CAN = \angle ABE $. 因为 $ \angle DAE = \angle AED = \angle NAE $,所以 $ \angle DAE = \frac{1}{2} ( \angle DAE + \angle NAE ) = \frac{1}{2} \angle DAN $,所以 $ \angle EAF = \angle DAF + \angle DAE = \frac{1}{2} ( \angle CAD + \angle DAN ) = \frac{1}{2} × ( 360^{\circ} - \angle CAN ) = 180^{\circ} - \frac{1}{2} \angle ABE $. 因为 $ \angle ABE + \angle ABM = 180^{\circ} $,所以 $ \angle EAF = 180^{\circ} - \frac{1}{2} ( 180^{\circ} - \angle ABM ) = 90^{\circ} + \frac{1}{2} \angle ABM $. 又因为 $ \angle EAF + \angle ABM = 150^{\circ} $,所以 $ \angle EAF = 90^{\circ} + \frac{1}{2} ( 150^{\circ} - \angle EAF ) = 165^{\circ} - \frac{1}{2} \angle EAF $,所以 $ \angle EAF = 110^{\circ} $. Ⅲ. 如图④所示, $ D $, $ E $ 均在点 $ B $ 左侧,此时 $ \angle DAE = \frac{1}{2} \angle DAN $, $ \angle DAF = \frac{1}{2} \angle CAD $, $ \angle EAF = \angle DAE + \angle DAF = \frac{1}{2} ( 360^{\circ} - \angle CAN ) = 180^{\circ} - \frac{1}{2} \angle ABG = 180^{\circ} - \frac{1}{2} ( 180^{\circ} - \angle ABM ) = 90^{\circ} + \frac{1}{2} \angle ABM $,所以 $ \angle EAF = 110^{\circ} $. 综上所述, $ \angle EAF = 30^{\circ} $ 或 $ \angle EAF = 110^{\circ} $.
