9. 如图,$B$,$C$,$D$是不在同一直线上的三点,且$∠CDE + ∠BCD - ∠ABC = 180^{\circ}$。
(1)如图①,试说明:$AB// DE$。
(2)$DG平分∠EDC$,点$P是DG$上一点,过点$P作射线PB$,设$∠1 = \alpha$。
①如图②,若$PD// BC$,$∠ABC = 2∠3$,求$∠C$的度数;(用含$\alpha$的式子表示)
②如图③,若$∠3 + \frac{1}{2}∠C = 90^{\circ}$,判断$∠1与∠2$的数量关系,并说明理由。

答案:9.(1)如图①,延长DC交AB于点F,因为∠BCD + ∠BCF = 180°,∠BCF + ∠BFC + ∠FBC = 180°,所以∠BCD = ∠BFC + ∠FBC,所以∠BFC = ∠BCD - ∠ABC.因为∠CDE + ∠BCD - ∠ABC = 180°,即∠CDE + ∠BFC = 180°,所以AB//DE(同旁内角互补,两直线平行).
(2)①因为PD//BC,所以∠2 = ∠3.又因为∠ABC = 2∠3,∠ABC = ∠1 + ∠2,∠1 = α,所以∠1 = ∠2 = ∠3 = α,∠ABC = 2α.因为DG平分∠EDC,∠CDG + ∠C = 180°,所以 $\frac{1}{2}$∠EDC + ∠C = 180°,所以∠EDC = 360° - 2∠C.因为∠EDC + ∠BCD - ∠ABC = 180°,即∠EDC = 180° - ∠C + 2α,所以360° - 2∠C = 180° - ∠C + 2α,即∠C = 180° - 2α.
②∠1 = ∠2.理由如下:
如图②,过点C作CH平分∠BCD交DG于点H,则∠4 = ∠5 = $\frac{1}{2}$∠BCD.
因为DG平分∠EDC,所以∠CDG = $\frac{1}{2}$∠EDC,所以∠5 + ∠CDG = $\frac{1}{2}$(∠BCD + ∠EDC),又因为∠CDE + ∠BCD - ∠ABC = 180°,所以∠5 + ∠CDG = $\frac{1}{2}$(180° + ∠ABC) = 90° + $\frac{1}{2}$∠ABC,所以∠PHC = 90° + $\frac{1}{2}$∠ABC.因为∠3 + $\frac{1}{2}$∠BCD = 90°,所以∠3 + ∠4 = 90°,所以∠PBC = 360° - ∠3 - ∠4 - ∠PHC = 360° - 90° - 90° - $\frac{1}{2}$∠ABC = 180° - $\frac{1}{2}$∠ABC.又因为∠PBC + ∠2 = 180°,所以∠2 = $\frac{1}{2}$∠ABC,所以∠1 = ∠2.