5. 已知直线$AB// DC$,点$P$为平面上一点,连接$AP与CP$。
(1)如图①,点$P在直线AB$,$CD$之间,当$∠BAP = 60^{\circ}$,$∠DCP = 20^{\circ}$时,求$∠APC$的度数。
(2)如图②,点$P在直线AB$,$CD$之间,在$AC$左侧,$∠BAP与∠DCP的平分线相交于点K$,写出$∠AKC与∠APC$之间的数量关系,并说明理由。
(3)如图③,点$P落在CD$外,$∠BAP与∠DCP的平分线相交于点K$,$∠AKC与∠APC$有何数量关系?并说明理由。


答案:5.(1)如图①,过点P作PE//AB,因为AB//CD,所以PE//AB//CD,所以∠APE = ∠BAP,∠CPE = ∠DCP,所以∠APC = ∠APE + ∠CPE = ∠BAP + ∠DCP = 60° + 20° = 80°.
(2)∠AKC = $\frac{1}{2}$∠APC.理由:如图②,过点K作KE//AB,因为AB//CD,所以KE//AB//CD,所以∠AKE = ∠BAK,∠CKE = ∠DCK,所以∠AKC = ∠AKE + ∠CKE = ∠BAK + ∠DCK.过点P作PF//AB,同理可得∠APC = ∠BAP + ∠DCP.因为∠BAP 与∠DCP 的平分线交于点K,所以∠BAK + ∠DCK = $\frac{1}{2}$∠BAP + $\frac{1}{2}$∠DCP = $\frac{1}{2}$(∠BAP + ∠DCP) = $\frac{1}{2}$∠APC,所以∠AKC = $\frac{1}{2}$∠APC.
(3)∠AKC = $\frac{1}{2}$∠APC.理由:如图③,过点K作KE//AB,因为AB//CD,所以KE//AB//CD,所以∠BAK = ∠AKE,∠DCK = ∠CKE,所以∠AKC = ∠AKE - ∠CKE = ∠BAK - ∠DCK.过点P作PF//AB,同理可得∠APC = ∠BAP - ∠DCP.因为∠BAP 与∠DCP 的平分线相交于点K,所以∠BAK - ∠DCK = $\frac{1}{2}$∠BAP - $\frac{1}{2}$∠DCP = $\frac{1}{2}$(∠BAP - ∠DCP) = $\frac{1}{2}$∠APC,所以∠AKC = $\frac{1}{2}$∠APC.
