搜 索
首 页
练习与测试答案
补充习题答案
课课练答案
同步练习答案
阅读答案
电子课本
更多
其他答案
课件下载
试卷练习
教学反思
说课稿
录音下载
教案下载
作文范例
简笔画下载
教学视频
语文知识
班主任资料
教材
其他资料
电子课本网
›
第127页
第127页
信息发布者:
解$:(1)$因为$AC//DF,$
所以$∠A=∠FGB=60°$
因为$AB//DE$
所以$∠D=∠FGB=60°$
$(2)$因为$AC//DF,$
所以$∠A+∠FGA=180°$
所以$∠FGA=180°-∠A=120°$
因为$AB//DE$
所以$∠D=∠FGA=120°$
相等或互补
解$: AE//CF,$理由如下:
∵$AB//CD($已知$),$
∴$∠A=∠ADC($两直线平行,内错角相等),
∵$∠A=∠C($已知$),$
∴$∠ADC=∠C($等量代换$),$
∴$AE//CF($内错角相等,两直线平行)。
A
B
解:
∵AB//CD,∠B=112°,
∴∠C=∠B=112°(两直线平行,内错角相等)。
∵CB//DE,
∴∠C+∠D=180°(两直线平行,同旁内角互补)。
∴∠D=180°-∠C=180°-112°=68°。
答案:A
解:
∵直线a//b,
∴∠1的同位角(设为∠3)与∠1相等,即∠3=∠1=50°。
三角板含30°角,其另一个锐角为60°,
∴∠2=180°-∠3-60°=180°-50°-60°=70°。
答案:D.70°
上一页
下一页