1. 已知 $x = \sqrt{3} - 2$,$y = \sqrt{3} + 2$,求代数式 $x^{2} + y^{2} + xy - 2x - 2y$ 的值.
答案:1. 解:$x + y = (\sqrt{3} - 2) + (\sqrt{3} + 2) = 2\sqrt{3}$,$xy = (\sqrt{3} - 2)(\sqrt{3} + 2) = -1$。
原式 $= (x + y)^2 - xy - 2(x + y) = (2\sqrt{3})^2 - (-1) - 2× 2\sqrt{3} = 12 + 1 - 4\sqrt{3} = 13 - 4\sqrt{3}$。
2. 已知 $x = \frac{1}{\sqrt{2} + 1}$,$y = \frac{1}{\sqrt{2} - 1}$,分别求下列代数式的值:
(1)$x^{2} + y^{2}$;(2)$\frac{y}{x} + \frac{x}{y}$.
答案:2. 解:$\because x = \frac{1}{\sqrt{2} + 1} = \frac{\sqrt{2} - 1}{(\sqrt{2} + 1)(\sqrt{2} - 1)} = \sqrt{2} - 1$,$y = \frac{1}{\sqrt{2} - 1} = \frac{\sqrt{2} + 1}{(\sqrt{2} + 1)(\sqrt{2} - 1)} = \sqrt{2} + 1$,
$\therefore x + y = \sqrt{2} - 1 + \sqrt{2} + 1 = 2\sqrt{2}$,$xy = (\sqrt{2} - 1)(\sqrt{2} + 1) = 2 - 1 = 1$。
(1) $x^2 + y^2 = (x + y)^2 - 2xy = (2\sqrt{2})^2 - 2× 1 = 8 - 2 = 6$。
(2) $\frac{y}{x} + \frac{x}{y} = \frac{x^2 + y^2}{xy} = \frac{6}{1} = 6$。
3. (2024·苏州吴中、吴江柏城期末)观察下列等式:

$\sqrt{2 + \frac{2}{3}} = 2\sqrt{\frac{2}{3}}$;
$\sqrt{3 + \frac{3}{8}} = 3\sqrt{\frac{3}{8}}$;
$\sqrt{4 + \frac{4}{15}} = 4\sqrt{\frac{4}{15}}$;
……
(1)请你根据上述规律填空:$\sqrt{5 + \frac{5}{24}} =$
$5\sqrt{\frac{5}{24}}$
.
(2)①把你发现的规律用含有 $n$ 的等式表示出来:$\sqrt{n + \frac{n}{n^{2} - 1}} =$
$n\sqrt{\frac{n}{n^2 - 1}}$
;
②证明①中的等式是正确的,并注明 $n$ 的取值范围.
答案:3. (1) $5\sqrt{\frac{5}{24}}$
(2) ① $n\sqrt{\frac{n}{n^2 - 1}}$
② 证明:等式左边 $= \sqrt{n(1 + \frac{1}{n^2 - 1})} = \sqrt{n· \frac{n^2}{n^2 - 1}} = n\sqrt{\frac{n}{n^2 - 1}} =$ 右边,$n$ 为大于 $1$ 的自然数。