答案:10. 解:$AF = \sqrt{2}DE$
(1) 如题图③,作 $DG// AF$,交 $BC$ 的延长线于点 $G$,连接 $EG$.
$\because$ 四边形 $ABCD$ 是正方形,
$\therefore ∠ ABC = ∠ BCD = 90^{\circ},AB = BC = CD = AD$,$AD// BC$.
$\because DG// AF,AD// BC,\therefore$ 四边形 $AFGD$ 为平行四边形,
$\therefore AF = DG,AD = FG,\therefore FG = CD$.
$\because ∠ ABC = 90^{\circ},AB = BC$,
$\therefore ∠ ACB = 45^{\circ},∠ ACD = 45^{\circ}$.
$\because EF⊥ AC,\therefore ∠ FEC = 90^{\circ},\therefore ∠ EFC = ∠ ECF = 45^{\circ}$,
$\therefore EF = EC,\therefore ∠ EFC = ∠ ECD$,
$\therefore △ CDE≌ △ FGE (SAS)$,
$\therefore ED = EG,∠ FEG = ∠ CED$,
$\therefore ∠ DEG = ∠ FEC = 90^{\circ},\therefore △ DEG$ 是等腰直角三角形,
$\therefore DG^{2} = DE^{2} + EG^{2} = 2DE^{2},\therefore DG = \sqrt{2}DE$,
$\therefore AF = \sqrt{2}DE$.
(2) 如答图,作 $DG⊥ DE$,并截取 $DG = DE$,连接 $AG$,$GE$,则 $△ DEG$ 是等腰直角三角形,
$\therefore EG^{2} = DE^{2} + DG^{2} = 2DE^{2},\therefore EG = \sqrt{2}DE$.
$\because$ 四边形 $ABCD$ 是正方形,$\therefore ∠ ADC = 90^{\circ},CD = AD$,
$\therefore ∠ DAC = ∠ DCA = 45^{\circ}$,同理,$∠ ACB = 45^{\circ}$.
$\because ∠ ADC = ∠ GDE = 90^{\circ},\therefore ∠ GDA = ∠ EDC$,
$\therefore △ GDA≌ △ EDC (SAS)$,
$\therefore ∠ GAD = ∠ ECD = 45^{\circ},AG = EC,\therefore ∠ GAE = 90^{\circ}$.
$\because EF⊥ AC,\therefore ∠ FEC = ∠ FEA = 90^{\circ}$,
$\therefore ∠ EFC = ∠ ECF = 45^{\circ},\therefore EF = EC,\therefore EF = AG$.
$\because ∠ GAE = ∠ FEA = 90^{\circ},\therefore AG// EF$,
$\therefore$ 四边形 $AGEF$ 为平行四边形,
$\therefore AF = EG,\therefore AF = \sqrt{2}DE$.