23. (12分)(2024·姑苏区期中)(1)如图①,AB//CD,点E,F分别在直线CD,AB上,∠BEC=3∠BEF,过点A作AG⊥EF交EF于点G,FK平分∠AFE,AK平分∠PAG,FK与AK交于点K.
①∠AKF=
45
°;
②若∠FAG=$\frac{1}{2}$∠BEF,求∠FBE的度数.
(2)如图②,将②中确定的△BEF绕着点F以每秒4°的速度逆时针旋转,旋转时间为t秒,△AFG保持不变,当边BF与射线FA重合时停止,则在旋转过程中,△BEF的边BE所在的直线与△AFG的某一边所在的直线垂直时,直接写出此时t的值.

答案:23. (1)①45
②解:因为$AG ⊥ EF$,所以$∠ AGE = ∠ AGF = 90^{\circ}$,
所以$∠ EFA + ∠ FAG = 90^{\circ}$.
因为$∠ FAG = \frac{1}{2} ∠ BEF$,
所以$∠ EFH + ∠ HFA + \frac{1}{2} ∠ BEF = 90^{\circ}$.
因为$AB // CD$,所以$∠ FBE = ∠ BEC$,$∠ CEF = ∠ AFE = ∠ EFH + ∠ HFA$.
又因为$∠ CEF = ∠ BEC + ∠ BEF$,$∠ BEC = 3∠ BEF$,
所以$∠ CEF = 4∠ BEF$,
所以$4∠ BEF + \frac{1}{2} ∠ BEF = 90^{\circ}$,解得$∠ BEF = 20^{\circ}$,
所以$∠ BEC = 3∠ BEF = 60^{\circ}$,所以$∠ FBE = ∠ BEC = 60^{\circ}$.
(2)解:由②可得$∠ FBE = 60^{\circ}$,$∠ BEF = 20^{\circ}$,$∠ FAG = \frac{1}{2} ∠ BEF = 10^{\circ}$,$∠ AFG = 80^{\circ}$,$∠ BFE = 100^{\circ}$.
当$B'E' ⊥ FG$时,如答图①.
因为$∠ FE'B' = 20^{\circ}$,
所以$∠ EFE' = 90^{\circ} - 20^{\circ} = 70^{\circ}$,
所以$∠ B'FE = 100^{\circ} - 70^{\circ} = 30^{\circ}$,
所以$∠ BFB' = 100^{\circ} - ∠ B'FE = 70^{\circ}$,
此时旋转时间$t = \frac{70}{4} = 17.5$(秒);

当$B'E' ⊥ AF$时,如答图②.
因为$∠ FE'B' = 20^{\circ}$,
所以$∠ AFE' = 90^{\circ} - 20^{\circ} = 70^{\circ}$,
所以$∠ B'FA = 100^{\circ} - 70^{\circ} = 30^{\circ}$,
所以$∠ BFB' = 180^{\circ} - ∠ B'FA = 150^{\circ}$,
此时旋转时间$t = \frac{150}{4} = 37.5$(秒);
当$B'E' ⊥ AG$时,如答图③.
因为$∠ FAG = 10^{\circ}$,所以$∠ B'HA = 90^{\circ} - 10^{\circ} = 80^{\circ} = ∠ E'HF$.
因为$∠ FE'B' = 20^{\circ}$,
所以$∠ E'FA = 180^{\circ} - 80^{\circ} - 20^{\circ} = 80^{\circ}$,
所以$∠ B'FA = 100^{\circ} - 80^{\circ} = 20^{\circ}$,
所以$∠ BFB' = 180^{\circ} - ∠ B'FA = 160^{\circ}$,
此时旋转时间$t = \frac{160}{4} = 40$(秒).
综上,此时t的值为17.5或37.5或40.