9. (2025·连云港期中)【创设情境】定义:有一组邻角互余的四边形叫作邻余四边形,这组邻角的夹边称为邻余线。
【概念理解】
(1)邻余四边形可能是
②
。(填序号)
①中心对称图形②轴对称图形
(2)如图①,邻余四边形 $ABCD$ 中,$AB$ 是邻余线,$AB// CD$,$AB = 7$,$AD = 3$,$CD = 2$,求 $BC$ 的长。
【拓展应用】
(3)如图②,邻余四边形 $ABCD$ 中,$AB$ 是邻余线,$AD = a$,$BC = b$,其中 $a≥ b$。
①若点 $M$,$N$ 分别是 $AB$,$CD$ 的中点,以 $M$,$N$ 为顶点作正方形 $EMFN$,求正方形 $EMFN$ 的面积;(用含 $a$,$b$ 的式子表示)
②若 $CD = c$,请直接写出 $AB$ 边长度的取值范围
$\sqrt{a^{2} + b^{2}} < AB≤\sqrt{a^{2} + b^{2}} + c$
。(用含 $a$,$b$,$c$ 的式子表示)

答案:9. (1)② 解析:当邻余四边形是同一底边上是$45^{\circ}$的等腰梯形时,它是轴对称图形,因为邻余四边形的邻角互余,所以它不能是平行四边形,所以它不能是中心对称图形,故答案为②。
(2)如图①,作$DE// BC$交$AB$于$E$,$\therefore ∠ AED = ∠ B$。$\because AB$是邻余线,$\therefore ∠ A + ∠ B = 90^{\circ}$,$\therefore ∠ A + ∠ AED = 90^{\circ}$,$\therefore ∠ ADE = 90^{\circ}$。$\because AB// CD$,$\therefore$四边形$CDEB$是平行四边形,$\therefore DE = BC$,$BE = CD = 2$。$\because AB = 7$,$\therefore AE = AB - BE = 7 - 2 = 5$。$\because AD = 3$,$\therefore DE = \sqrt{AE^{2} - AD^{2}} = \sqrt{5^{2} - 3^{2}} = 4$,$\therefore BC = 4$。
(3)①如图②,作射线$AN$,并截取$NG = AN$,连接$CG$,$BG$,$MN$,设$AD$和$BC$的延长线交于$H$,$\because$点$N$是$CD$的中点,$\therefore DN = CN$。$\because ∠ AND = ∠ CNG$,$AN = NG$,$\therefore △ ADN≌△ GCN(\mathrm{SAS})$,$\therefore CG = AD = a$,$∠ DAN = ∠ CGN$,$\therefore AD// CG$,$\therefore ∠ HCG = ∠ AHC$。$\because M$是$AB$的中点,$NG = AN$,$\therefore MN = \frac{1}{2}BG$。$\because AB$是邻余线,$\therefore ∠ DAB + ∠ CBA = 90^{\circ}$,$\therefore ∠ AHC = 90^{\circ}$,$\therefore ∠ HCG = 90^{\circ}$,$\therefore ∠ BCG = 90^{\circ}$。$\because AD = a = CG$,$BC = b$,$\therefore BG = \sqrt{CG^{2} + BC^{2}} = \sqrt{a^{2} + b^{2}}$,$\therefore MN = \frac{\sqrt{a^{2} + b^{2}}}{2}$,$\therefore S_{\mathrm{正方形}EMFN} = \frac{1}{2}EF· MN = \frac{1}{2}MN^{2} = \frac{a^{2} + b^{2}}{8}$。
②$\sqrt{a^{2} + b^{2}} < AB≤\sqrt{a^{2} + b^{2}} + c$ 解析:如图②,连接$HN$,$HM$,由①知$∠ AHC = 90^{\circ}$,$MN = \frac{\sqrt{a^{2} + b^{2}}}{2}$,$\because$点$N$是$CD$的中点,$M$是$AB$的中点,$\therefore HN = \frac{1}{2}CD = \frac{1}{2}c$,$HM = \frac{1}{2}AB$。$\because$邻余四边形$ABCD$中,$AB$是邻余线,$\therefore$点$H$在$CD$上方,$\therefore MN < HM≤ MN + HN$,$\therefore \frac{\sqrt{a^{2} + b^{2}}}{2} < HM≤\frac{\sqrt{a^{2} + b^{2}}}{2} + \frac{1}{2}c$,$\therefore \sqrt{a^{2} + b^{2}} < AB≤\sqrt{a^{2} + b^{2}} + c$。