答案:10.$\frac{3}{8}$解析:如图,过点F分别作FM⊥BC,FN⊥AB,垂足为M,N,连接AM,则∠FMC = 90°.
∵四边形ABCD为正方形,
∴∠ABC = 90°,
∴∠ABC = ∠FMC,
∴AB//FM,
∴FN = BM.
∵$S_{△ABF}$ = $\frac{1}{2}$AB·FN,$S_{△ABM}$ = $\frac{1}{2}$AB·BM,
∴$S_{△ABF}$ = $S_{△ABM}$.
∵CF⊥BE,AB = 1 = BC,∠EBC = 30°,
∴∠BFC = 90°,∠BCF = 60°,CF = $\frac{1}{2}$BC = $\frac{1}{2}$,
∴∠CFM = 90° - ∠BCF = 30°,
∴CM = $\frac{1}{2}$CF = $\frac{1}{4}$,
∴BM = BC - CM = $\frac{3}{4}$,
∴$S_{△ABF}$ = $S_{△ABM}$ = $\frac{1}{2}$×1×$\frac{3}{4}$ = $\frac{3}{8}$.
