4. (2025·南京期末)定义:如果四边形的一条对角线的中点到另外两个顶点的距离都等于这条对角线长的一半,那么我们称这样的四边形为“等距四边形”.
(1)在下列图形中:①平行四边形;②矩形;③菱形.一定是“等距四边形”的是
②
;(填序号)
(2)如图①,在菱形$ABCD$中,$AB = 4,∠ A = 60^{\circ},BE⊥ CD$于点$E$,点$F$是菱形$ABCD$边上的一点,顺次连接$B,E,D,F$,若四边形$BEDF$为“等距四边形”,求线段$EF$的长;
(3)如图②,在等边$△ ABC$中,$AB = 4$,点$P$是$△ ABC$内任意一点,在$AB,BC,CA$上是否分别存在点,使得这些点与点$P$的连线将$△ ABC$恰好分割成三个“等距四边形”,若存在,请直接写出这三个“等距四边形”的周长和,若不存在,请说明理由.

答案:(1)② 解析:平行四边形与菱形对角线互相平分,但两条对角线长度不一定相等,因此一条对角线的中点到另外两个顶点的距离不一定等于这条对角线的一半,故①③不符合题意,②矩形的对角线相等且互相平分,一条对角线的中点到另外两个顶点的距离都等于这条对角线长的一半,符合题意。故答案为②。
(2)根据“等距四边形”的定义,当点$F$在$AD$上且$BF ⊥ AD$时,四边形$BFDE$是“等距四边形”,如图①,取$BD$的中点$O$,连接$OF$,$OE$,$EF$,$\because BF ⊥ AD$,$BE ⊥ DC$,$\therefore ∠ BFD = ∠ BED = 90^{\circ}$,$\therefore OF = OE = \frac{1}{2}BD$,$\therefore$ 四边形$BFDE$是“等距四边形”,在菱形$ABCD$中,$AB = 4$,$∠ A = 60^{\circ}$,$AD // BC$,$\therefore ∠ C = ∠ A = 60^{\circ}$,$∠ ABC = 120^{\circ}$,$\therefore ∠ ABF = ∠ CBE = 30^{\circ}$,$\therefore ∠ EBF = ∠ ABC - ∠ ABF - ∠ CBE = 60^{\circ}$,根据菱形的对称性得,$BF = BE$,$\therefore △ BEF$是等边三角形,在$Rt △ ABF$中,$∠ ABF = 30^{\circ}$,$\therefore AF = \frac{1}{2}AB = 2$,根据勾股定理得,$BF = 2\sqrt{3}$,$\therefore EF = BF = 2\sqrt{3}$。

当点$F$在$AB$上且$DF ⊥ AB$时,四边形$DFBE$是“等距四边形”,如图②,连接$BD$,$EF$,交于点$O$,$\because DF ⊥ AB$,$BE ⊥ CD$,$\therefore ∠ BFD = ∠ BED = 90^{\circ}$。$\because AB // CD$,$\therefore ∠ FBE = 180^{\circ} - ∠ BED = 90^{\circ}$,$\therefore ∠ BFD = ∠ BED = ∠ FBE$,$\therefore$ 四边形$BFDE$是矩形,$\therefore BD = EF$,在菱形$ABCD$中,$AB = AD = 4$,$∠ A = 60^{\circ}$,$\therefore BD = AB = 4$,$\therefore EF = 4$。
(3)$12 + 4\sqrt{3}$ 解析:存在;过点$P$分别作$PD ⊥ AB$于$D$,$PE ⊥ BC$于$E$,$PF ⊥ AC$于$F$,连接$AP$,$BP$,$CP$,如图③,同(2)的方法得,四边形$ADPF$,四边形$BEPD$,四边形$ECFP$是“等距四边形”,过点$A$作$AG ⊥ BC$于$G$,在$Rt △ ABC$中,$∠ ABC = 60^{\circ}$,$AB = 4$,$\therefore ∠ BAG = 30^{\circ}$,$\therefore BG = \frac{1}{2}AB = 2$,根据勾股定理得$AG = 2\sqrt{3}$,$\therefore S_{△ ABC} = \frac{1}{2}BC · AG = \frac{1}{2} × 4 × 2\sqrt{3} = 4\sqrt{3}$,$\therefore S_{△ ABC} = S_{△ APB} + S_{△ BPC} + S_{△ APC} = 4\sqrt{3}$,$\therefore \frac{1}{2}(AB · PD + BC · PE + AC · PF) = 4\sqrt{3}$。$\because AB = BC = AC = 4$,$\therefore PD + PE + PF = 2\sqrt{3}$。$\therefore$ 四边形$ADPF$,四边形$DBEP$,四边形$PECF$的周长的和为$AB + BC + AC + 2(PD + PE + PF) = 12 + 4\sqrt{3}$。
