10. (2025·漳州期中)传统文化幻方是一种中国传统游戏,它是将从一到若干个数的自然数排成纵横各为若干个数的正方形,使在同一行、同一列和同一对角线上的几个数的和都相等。类比幻方,我们给出如图所示的方格,要使方格中横向、纵向及对角线方向上的实数相乘的结果都相等,则$A$,$B$,$C$,$D$之和为
$3\sqrt{5}+3$
。

答案:10. $3\sqrt{5}+3$ 解析:对角线方向上的实数相乘的结果为$5\sqrt{2}×\sqrt{10}×\sqrt{2}=10\sqrt{10}$,根据方格中横向、纵向及对角线方向上的实数相乘的结果都相等得$A×5×\sqrt{2}=10\sqrt{10}$,解得$A=2\sqrt{5}$,$B×\sqrt{10}×10=10\sqrt{10}$,解得$B=1$,$5×\sqrt{10}× C=10\sqrt{10}$,解得$C=2$,$\sqrt{2}×10× D=10\sqrt{10}$,解得$D=\sqrt{5}$,
∴ A,B,C,D 之和为$2\sqrt{5}+1+2+\sqrt{5}=3\sqrt{5}+3$.
11. 计算:
(1) (上海中考)$\sqrt[3]{8}+\frac{1}{2+\sqrt{5}}-(\frac{1}{3})^{-2}+\sqrt{5}-3$;
(2) $\sqrt{2}×(\sqrt{2}+\frac{1}{\sqrt{2}})-\frac{\sqrt{18}-\sqrt{8}}{\sqrt{2}}$;
(3) $(\sqrt{27}×3\sqrt{6}+\frac{4}{5}\sqrt{50}-8\sqrt{\frac{1}{2}})÷\sqrt{2}$;
(4) $(\frac{\sqrt{18}}{3}+\sqrt{3}-\sqrt{5})(\sqrt{2}-\frac{3}{\sqrt{3}}+\sqrt{5})$。
答案:11. (1) 原式$=2+\sqrt{5}-2-9+3-\sqrt{5}=-6$.
(2) 原式$=\sqrt{2}×(\sqrt{2}+\frac{\sqrt{2}}{2})-\frac{3\sqrt{2}-2\sqrt{2}}{\sqrt{2}}=\sqrt{2}×\frac{3\sqrt{2}}{2}-\frac{\sqrt{2}}{\sqrt{2}}=3-1=2$.
(3) 原式$=(3\sqrt{3}×3\sqrt{6}+\frac{4}{5}×5\sqrt{2}-8×\frac{\sqrt{2}}{2})÷\sqrt{2}=(27\sqrt{2}+4\sqrt{2}-4\sqrt{2})÷\sqrt{2}=27\sqrt{2}÷\sqrt{2}=27$.
(4) 原式$=[\sqrt{2}+(\sqrt{3}-\sqrt{5})]×[\sqrt{2}-(\sqrt{3}-\sqrt{5})]=(\sqrt{2})^{2}-(\sqrt{3}-\sqrt{5})^{2}=2-(3-2\sqrt{15}+5)=2-8+2\sqrt{15}=-6+2\sqrt{15}$.
12. 有个填写运算符号的游戏:在“$\frac{\sqrt{2}}{2}□\sqrt{8}□\sqrt{18}□4\sqrt{2}$”中的每个$□$内,填入$+$,$-$,$×$,$÷$中的某一个(可重复使用),然后计算结果。
(1) 计算:$\frac{\sqrt{2}}{2}+\sqrt{8}-\sqrt{18}-4\sqrt{2}$;
(2) 若$\frac{\sqrt{2}}{2}÷\sqrt{8}×\sqrt{18}□4\sqrt{2}=-\frac{13}{4}\sqrt{2}$,请推算$□$内的符号;
(3) 在“$\frac{\sqrt{2}}{2}□\sqrt{8}□\sqrt{18}-4\sqrt{2}$”的$□$内填入符号后,使计算所得结果最大,直接写出这个最大结果。
答案:12. (1) $\frac{\sqrt{2}}{2}+\sqrt{8}-\sqrt{18}-4\sqrt{2}=\frac{\sqrt{2}}{2}+2\sqrt{2}-3\sqrt{2}-4\sqrt{2}=-\frac{9\sqrt{2}}{2}$.
(2) 因为$\frac{\sqrt{2}}{2}÷\sqrt{8}×\sqrt{18}□4\sqrt{2}=-\frac{13}{4}\sqrt{2}$,所以$\frac{\sqrt{2}}{2}×\frac{1}{2\sqrt{2}}×3\sqrt{2}□4\sqrt{2}=-\frac{13}{4}\sqrt{2}$,所以$\frac{3\sqrt{2}}{4}□4\sqrt{2}=-\frac{13}{4}\sqrt{2}$. 因为$\frac{3\sqrt{2}}{4}-4\sqrt{2}=-\frac{13}{4}\sqrt{2}$,所以$□$内的符号是“-”.
(3) $12-\frac{7\sqrt{2}}{2}$ 解析:$\frac{\sqrt{2}}{2}+\sqrt{8}×\sqrt{18}-4\sqrt{2}=12-\frac{7\sqrt{2}}{2}$,第一个$□$内填“+”,第二个$□$内填“×”可使计算所得结果最大,最大是$12-\frac{7\sqrt{2}}{2}$.
13. 若$\sum_{i = 1}^{k}f(i)=f(1)+f(2)+f(3)+··· +f(k)$,则$(\sqrt{3n + 2}+\frac{2}{\sqrt{2}})·\sum_{i = 1}^{n}\frac{1}{\sqrt{3i + 2}+\sqrt{3i - 1}}=$(
A
)
A.$n$
B.$2n$
C.$\sqrt{3n + 1}$
D.$n\sqrt{2}$
答案:13. A 解析:根据题意得$\sum_{i = 1}^{k}f(i)=f(1)+f(2)+f(3)+··· +f(k)$,
∴ $\sum_{i = 1}^{n}\frac{1}{\sqrt{3i + 2}+\sqrt{3i - 1}}=\frac{1}{\sqrt{3×1 + 2}+\sqrt{3×1 - 1}}+\frac{1}{\sqrt{3×2 + 2}+\sqrt{3×2 - 1}}+\frac{1}{\sqrt{3×3 + 2}+\sqrt{3×3 - 1}}+···+\frac{1}{\sqrt{3n + 2}+\sqrt{3n - 1}}=\frac{1}{\sqrt{5}+\sqrt{2}}+\frac{1}{\sqrt{8}+\sqrt{5}}+\frac{1}{\sqrt{11}+\sqrt{8}}+···+\frac{1}{\sqrt{3n + 2}+\sqrt{3n - 1}}=\frac{\sqrt{5}-\sqrt{2}}{(\sqrt{5}+\sqrt{2})×(\sqrt{5}-\sqrt{2})}+\frac{\sqrt{8}-\sqrt{5}}{(\sqrt{8}+\sqrt{5})×(\sqrt{8}-\sqrt{5})}+\frac{\sqrt{11}-\sqrt{8}}{(\sqrt{11}+\sqrt{8})×(\sqrt{11}-\sqrt{8})}+···+\frac{\sqrt{3n + 2}-\sqrt{3n - 1}}{(\sqrt{3n + 2}+\sqrt{3n - 1})(\sqrt{3n + 2}-\sqrt{3n - 1})}=\frac{\sqrt{5}-\sqrt{2}}{3}+\frac{\sqrt{8}-\sqrt{5}}{3}+\frac{\sqrt{11}-\sqrt{8}}{3}+···+\frac{\sqrt{3n + 2}-\sqrt{3n - 1}}{3}=\frac{\sqrt{5}}{3}-\frac{\sqrt{2}}{3}+\frac{\sqrt{8}}{3}-\frac{\sqrt{5}}{3}+\frac{\sqrt{11}}{3}-\frac{\sqrt{8}}{3}+···+\frac{\sqrt{3n + 2}}{3}-\frac{\sqrt{3n - 1}}{3}=-\frac{\sqrt{2}}{3}+\frac{\sqrt{3n + 2}}{3}$,
∴ $(\sqrt{3n + 2}+\frac{2}{\sqrt{2}})·\sum_{i = 1}^{n}\frac{1}{\sqrt{3i + 2}+\sqrt{3i - 1}}=(\sqrt{3n + 2}+\sqrt{2})·(-\frac{\sqrt{2}}{3}+\frac{\sqrt{3n + 2}}{3})=\frac{3n + 2}{3}+\frac{\sqrt{2}·\sqrt{3n + 2}}{3}-\frac{\sqrt{2}·\sqrt{3n + 2}}{3}-\frac{2}{3}=\frac{3n}{3}=n$. 故选 A.
14. (1) 先化简,再求值:$\frac{x\sqrt{y}-y\sqrt{x}}{x\sqrt{y}+y\sqrt{x}}-\frac{x\sqrt{y}+y\sqrt{x}}{y\sqrt{x}-x\sqrt{y}}$,其中$x = 3$,$y = 2$;
答案:14. (1) 原式$=\frac{\sqrt{x}\sqrt{y}(\sqrt{x}-\sqrt{y})}{\sqrt{x}\sqrt{y}(\sqrt{x}+\sqrt{y})}-\frac{\sqrt{x}\sqrt{y}(\sqrt{x}+\sqrt{y})}{\sqrt{x}\sqrt{y}(\sqrt{y}-\sqrt{x})}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{x}+\sqrt{y}}{\sqrt{y}-\sqrt{x}}=\frac{(\sqrt{x}-\sqrt{y})^{2}}{(\sqrt{x}+\sqrt{y})(\sqrt{x}-\sqrt{y})}-\frac{(\sqrt{x}+\sqrt{y})^{2}}{(\sqrt{y}-\sqrt{x})(\sqrt{y}+\sqrt{x})}=\frac{x + y - 2\sqrt{xy}}{x - y}-\frac{x + y + 2\sqrt{xy}}{y - x}=\frac{x + y - 2\sqrt{xy}+x + y + 2\sqrt{xy}}{x - y}=\frac{2(x + y)}{x - y}$,当$x = 3$,$y = 2$时,原式$=\frac{2×(3 + 2)}{3 - 2}=10$.
(2) 先化简,再求值:$(\frac{1}{a-\sqrt{ab}}+\frac{1}{\sqrt{ab}+b})÷\frac{\sqrt{ab}}{a - b}$,其中$a=\sqrt{3}+1$,$b=\sqrt{3}-1$。
答案:(2) 原式$=(\frac{1}{a - \sqrt{ab}}+\frac{1}{\sqrt{ab}+b})·\frac{(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}{\sqrt{ab}}=[\frac{1}{\sqrt{a}(\sqrt{a}-\sqrt{b})}+\frac{1}{\sqrt{b}(\sqrt{a}+\sqrt{b})}]·\frac{(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}{\sqrt{ab}}=\frac{1}{\sqrt{a}(\sqrt{a}-\sqrt{b})}·\frac{(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}{\sqrt{ab}}+\frac{1}{\sqrt{b}(\sqrt{a}+\sqrt{b})}·\frac{(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}{\sqrt{ab}}=\frac{\sqrt{a}+\sqrt{b}}{a\sqrt{b}}+\frac{\sqrt{a}-\sqrt{b}}{b\sqrt{a}}=\frac{\sqrt{ab}+b}{ab}+\frac{a - \sqrt{ab}}{ab}=\frac{\sqrt{ab}+b + a - \sqrt{ab}}{ab}=\frac{a + b}{ab}$.
∵ $a = \sqrt{3}+1$,$b = \sqrt{3}-1$,
∴ $a + b=\sqrt{3}+1+\sqrt{3}-1=2\sqrt{3}$,$ab = (\sqrt{3}+1)(\sqrt{3}-1)=2$,
∴ $\frac{a + b}{ab}=\frac{2\sqrt{3}}{2}=\sqrt{3}$.