零五网 全部参考答案 通城学典课时作业本答案 2026年通城学典课时作业本七年级数学下册人教版南通专版 第36页解析答案
19. (8 分)解不等式组$\begin{cases}5 + 3x\lt13,\frac{x + 2}{3} - \frac{x - 1}{2}\leq2,\end{cases}$并写出它的所有正整数解。
答案:$\begin{cases}5 + 3x < 13①,\frac{x + 2}{3}-\frac{x - 1}{2}\leq2②.\end{cases}$
解不等式①,得$x < \frac{8}{3}$。解不等式
②,得$x\geq - 5$。$\therefore$原不等式组的解集为$-5\leq x < \frac{8}{3}$。$\therefore$其所有
正整数解为$1,2$
20. (10 分)如图,有下列条件:①$\angle1 + \angle2 = 180^{\circ}$;②$\angle3 = \angle A$;③$\angle B = \angle C$。从中选出两个作为题设,另一个作为结论可以组成 3 个命题。从中选择 1 个真命题,写出已知、求证,并证明。
如图,已知
①②
,求证:
(填序号)。
证明:

答案:答案不唯一,如①② ③ $\because\angle1 + \angle2 = 180^{\circ}$,$\therefore AD//EF$。$\therefore\angle3 = \angle D$。$\because\angle3 = \angle A$,$\therefore\angle A = \angle D$。$\therefore AB// CD$。
$\therefore\angle B = \angle C$
21. (12 分)如图,$AB// CD$,$\angle B = \angle D$,$AE$交$BC$的延长线于点$E$,交$CD$于点$F$。
(1)求证:$AD// BE$;
(2)若$\angle ACB = \angle CFE = 60^{\circ}$,$\angle BAC = 2\angle EAC$,求$\angle B$的度数。

答案:(1)$\because AB// CD$,$\therefore\angle B = \angle DCE$。$\because\angle B = \angle D$,
$\therefore\angle DCE = \angle D$。$\therefore AD// BE$ (2)$\because AB// CD$,$\angle ACB =\angle CFE = 60^{\circ}$,$\therefore\angle BAE = \angle CFE = 60^{\circ}$,$\angle BAC = \angle ACD$,
$\angle B = \angle DCE$。$\therefore\angle EAC + \angle BAC = 60^{\circ}$。$\because\angle BAC = 2\angle EAC$,
$\therefore\angle EAC = 20^{\circ}$。$\therefore\angle BAC = \angle ACD = 40^{\circ}$。$\because\angle ACB +\angle ACD + \angle DCE = 180^{\circ}$,$\therefore\angle DCE = 180^{\circ}-\angle ACB-\angle ACD =180^{\circ}-60^{\circ}-40^{\circ} = 80^{\circ}$。$\therefore\angle B = \angle DCE = 80^{\circ}$
上一页 下一页