1. 下列方程组中,属于三元一次方程组的是(
C
)
A.$\begin{cases}x + y + z = 5,\\y + z + 2w = 1,\\x - z + w = 6\end{cases}$
B.$\begin{cases}x + y - z = 1,\\xz = 6,\\x - y = 10\end{cases}$
C.$\begin{cases}x + y - z = 10,\\x - y + z = 1,\\x - z = 4\end{cases}$
D.$\begin{cases}x + y = 3,\\y + \frac{1}{z} = 1,\\x - z = 6\end{cases}$
答案:1.C
2. 已知方程组$\begin{cases}x + 2y + 3z = 23①,\\y - z = 5②,\\x + 2z = 10③,\end{cases}$由②,得$y =$ ______ ④;由③,得$x =$ ______ ⑤;将④⑤代入①,得$z =$ ______ .
答案:2.5+z 10-2z 1
3. (教材P111习题10.4第1题变式)解方程组:
(1)$\begin{cases}z = x + y,\\2x - 3y + 5z = 5,\\3x + y - z = 2;\end{cases}$
(2)$\begin{cases}x + y + z = 8,\\3x - y + z = 4,\\x - z = 3.\end{cases}$
答案:3.(1)$\begin{cases} x = 1, \\ y = -1, \\ z = 0 \end{cases}$ (2)$\begin{cases} x = 3, \\ y = 5, \\ z = 0 \end{cases}$
解析:
(1)解:$\begin{cases}z = x + y,①\\2x - 3y + 5z = 5,②\\3x + y - z = 2,③\end{cases}$
将①代入②得:$2x - 3y + 5(x + y) = 5$,化简得$7x + 2y = 5,④$
将①代入③得:$3x + y - (x + y) = 2$,化简得$2x = 2$,解得$x = 1$
把$x = 1$代入④得:$7×1 + 2y = 5$,解得$y = -1$
把$x = 1$,$y = -1$代入①得:$z = 1 + (-1) = 0$
所以方程组的解为$\begin{cases} x = 1, \\ y = -1, \\ z = 0 \end{cases}$
(2)解:$\begin{cases}x + y + z = 8,①\\3x - y + z = 4,②\\x - z = 3,③\end{cases}$
① + ②得:$4x + 2z = 12$,化简得$2x + z = 6,④$
③ + ④得:$3x = 9$,解得$x = 3$
把$x = 3$代入③得:$3 - z = 3$,解得$z = 0$
把$x = 3$,$z = 0$代入①得:$3 + y + 0 = 8$,解得$y = 5$
所以方程组的解为$\begin{cases} x = 3, \\ y = 5, \\ z = 0 \end{cases}$
4. 我们知道方程组的解与方程组中每个方程的系数和常数项有联系,系数和常数项经过一系列变形、运算就可以求出方程组的解.规定:关于$x$,$y$的二元一次方程组$\begin{cases}a_1x + b_1y = c_1,\\a_2x + b_2y = c_2\end{cases}$可以写成矩阵$\begin{pmatrix}a_1&b_1&c_1\\a_2&b_2&c_2\end{pmatrix}$的形式.例如:$\begin{cases}3x + 4y = 16,\\5x - 6y = 33\end{cases}$可以写成矩阵$\begin{pmatrix}3&4&16\\5& - 6&33\end{pmatrix}$的形式.
根据以上信息解决下面的问题:
(1)请求出矩阵$\begin{pmatrix}4&1&5\\3& - 2&1\end{pmatrix}$对应的方程组的解;
(2)若矩阵$\begin{pmatrix}a& - 2&3&7\\1&b&4&5\\2& - 1&c&8\end{pmatrix}$所对应的方程组的解为$\begin{cases}x = 1,\\y = 1,\\z = 1,\end{cases}$求$a + b + c$的值.
答案:4.(1) 由题意,得矩阵$\begin{pmatrix}4 & 1 & 5 \\3 & -2 & 3\end{pmatrix}$对应的方程组为
$\begin{cases}4x + y = 5, \\3x - 2y = 3\end{cases}$
解得$\begin{cases} x = \frac{13}{11}, \\ y = \frac{3}{11} \end{cases}$
∴矩阵$\begin{pmatrix}4 & 1 & 5 \\3 & -2 & 3\end{pmatrix}$对应的方程组
的解为$\begin{cases} x = \frac{13}{11}, \\ y = \frac{3}{11} \end{cases}$
(2)
∵矩阵$\begin{pmatrix}a & -2 & 3 & 7 \\1 & b & 4 & 5 \\2 & -1 & c & 8\end{pmatrix}$所对应的方程
组的解为$\begin{cases} x = 1, \\ y = 1, \\ z = 1 \end{cases}$
∴将$\begin{cases} x = 1, \\ y = 1, \\ z = 1 \end{cases}$代入$\begin{cases}ax - 2y + 3z = 7, \\x + by + 4z = 5, \\2x - y + cz = 8\end{cases}$
得$\begin{cases}a - 2 + 3 = 7①, \\1 + b + 4 = 5②, \\2 - 1 + c = 8③\end{cases}$
①+②+③,得$a + b + c = 13$