10. 已知 $ AB // CD $,$ \angle ABE $ 与 $ \angle CDE $ 的平分线相交于点 $ F $.
(1) 如图①,若 $ \angle E = 80^{\circ} $,求 $ \angle BFD $ 的度数;
(2) 如图②,$ \angle ABM = \frac{1}{3} \angle ABF $,$ \angle CDM = \frac{1}{3} \angle CDF $,写出 $ \angle M $ 与 $ \angle E $ 之间的数量关系,并证明你的结论;
(3) 如图②,若 $ \angle ABM = \frac{1}{n} \angle ABF $,$ \angle CDM = \frac{1}{n} \angle CDF $,设 $ \angle E = m $,直接用含 $ m $,$ n $ 的式子表示 $ \angle M $ 的度数.

答案:10.(1)如图,分别过点E,F作EG//AB,FH//AB.
∵AB//CD,
∴EG//AB//FH//CD.
∴∠ABF = ∠BFH,∠CDF = ∠DFH,∠ABE + ∠BEG = 180°,∠GED + ∠CDE = 180°.
∴∠ABE + ∠BEG + ∠GED + ∠CDE = 360°.
∵∠BED = ∠BEG + ∠GED = 80°,
∴∠ABE + ∠CDE = 280°.
∵∠ABE与∠CDE的平分线相交于点F,
∴易得∠ABF + ∠CDF = 140°.
∵∠ABF = ∠BFH,∠DFH = ∠CDF,
∴∠BFD = ∠BFH + ∠DFH = ∠ABF + ∠CDF = 140°
(2)6∠M + ∠E = 360°
∵∠ABM = $\frac{1}{3}$∠ABF,∠CDM = $\frac{1}{3}$∠CDF,
∴∠ABF = 3∠ABM,∠CDF = 3∠CDM.
∵∠ABE与∠CDE的平分线相交于点F,
∴易得∠ABE = 6∠ABM,∠CDE = 6∠CDM.由(1),易得∠ABE + ∠E + ∠CDE = 360°,
∴6∠ABM + 6∠CDM + ∠E = 360°.由题意,易得∠M = ∠ABM + ∠CDM,
∴6∠M + ∠E = 360°
(3)由(2),易得2n∠ABM + 2n∠CDM + ∠E = 360°.
∵∠E = m,∠M = ∠ABM + ∠CDM,
∴∠M = $\frac{360° - m}{2n}$
