5. (2025·海安期末)已知 $ AB // CD $,点 $ E $ 在直线 $ AB $ 上,点 $ F $ 在直线 $ CD $ 上,$ P $ 为平面内一点.
(1) 如图①,若点 $ P $ 在 $ AB $,$ CD $ 之间,$ \angle EPF = 100^{\circ} $,$ \angle AEP $ 的平分线与 $ \angle CFP $ 的平分线交于点 $ Q $,求 $ \angle Q $ 的度数;
(2) 如图②,若点 $ P $ 在直线 $ AB $ 上方,$ \angle EPF = 50^{\circ} $,$ \angle CFP $ 的平分线与 $ \angle BEP $ 的平分线 $ EG $ 所在直线交于点 $ H $,求 $ \angle H $ 的度数.

答案:5.(1)如图①,过点P作PM//AB,过点Q作QN//AB,则∠EPM = ∠AEP.
∵AB//CD,
∴PM//CD.
∴∠FPM = ∠PFC.
∴∠EPF = ∠EPM + ∠FPM = ∠AEP + ∠PFC = 100°.同理,可得∠EQF = ∠AEQ + ∠QFC.
∵∠AEP的平分线与∠CFP的平分线交于点Q,
∴∠AEQ = $\frac{1}{2}$∠AEP,∠QFC = $\frac{1}{2}$∠CFP.
∴∠EQF = ∠AEQ + ∠QFC = $\frac{1}{2}$∠AEP + $\frac{1}{2}$∠PFC = $\frac{1}{2}$(∠AEP + ∠PFC) = 50°
(2)如图②,过点P作PM//AB,过点Q作QN//AB,则∠EPM = ∠AEP.
∵AB//CD,
∴PM//CD.
∴∠FPM = ∠PFC.
∴∠EPF = ∠EPM + ∠FPM = ∠AEP + ∠PFC = 100°.同理,可得∠EQF = ∠AEQ + ∠QFC.
∵∠AEP的平分线与∠CFP的平分线交于点Q,
∴∠AEQ = $\frac{1}{2}$∠AEP,∠QFC = $\frac{1}{2}$∠CFP.
∴∠EQF = ∠AEQ + ∠QFC = $\frac{1}{2}$∠AEP + $\frac{1}{2}$∠PFC = $\frac{1}{2}$(∠AEP + ∠PFC) = 50°
(2)如图②,过点P作PM//AB,过点Q作QN//AB,则∠EPM = ∠AEP.
∵AB//CD,
∴PM//CD.
∴∠FPM = ∠PFC.
∴∠EPF = ∠EPM + ∠FPM = ∠AEP + ∠PFC = 100°.同理,可得∠EQF = ∠AEQ + ∠QFC.
∵∠AEP的平分线与∠CFP的平分线交于点Q,
∴∠AEQ = $\frac{1}{2}$∠AEP,∠QFC = $\frac{1}{2}$∠CFP.
∴∠EQF = ∠AEQ + ∠QFC = $\frac{1}{2}$∠AEP + $\frac{1}{2}$∠PFC = $\frac{1}{2}$(∠AEP + ∠PFC) = 50°
(2)如图②,过点P作PM//AB,过点Q作QN//AB,则∠EPM = ∠AEP.
∵AB//CD,
∴PM//CD.
∴∠FPM = ∠PFC.
∴∠EPF = ∠EPM + ∠FPM = ∠AEP + ∠PFC = 100°.同理,可得∠EQF = ∠AEQ + ∠QFC.
∵∠AEP的平分线与∠CFP的平分线交于点Q,
∴∠AEQ = $\frac{1}{2}$∠AEP,∠QFC = $\frac{1}{2}$∠CFP.
∴∠EQF = ∠AEQ + ∠QFC = $\frac{1}{2}$∠AEP + $\frac{1}{2}$∠PFC = $\frac{1}{2}$(∠AEP + ∠PFC) = 50°
(2)如图②,过点H作HJ//AB,设PF与AB的交点为O.
∵AB//CD,
∴HJ//AB//CD.
∴∠POA = ∠PFC,∠GHJ = ∠GEO,∠FHJ = ∠CFH.
∵∠EPF = 50°,
∴∠BEP + ∠POA = ∠BEP + ∠PFC = 130°.
∵∠CFP的平分线与∠BEP的平分线EG所在直线交于点H,
∴∠BEP = 2∠GEO,∠PFC = 2∠CFH.
∴2∠GEO + 2∠CFH = ∠BEP + ∠PFC = 130°.
∴∠GHF = ∠GHJ + ∠FHJ = ∠GEO + ∠CFH = 65°
