20. (6 分)解方程:
(1)$\frac{3}{x + 1} - \frac{1}{x - 1} = 0$;
(2)$\frac{x - 1}{x - 2} - \frac{3}{(x + 1)(x - 2)} = 1$.
答案:20.(1)x=2 (2)无解
解析:
(1)方程两边同乘$(x + 1)(x - 1)$,得$3(x - 1) - (x + 1) = 0$,展开得$3x - 3 - x - 1 = 0$,合并同类项得$2x - 4 = 0$,解得$x = 2$。检验:当$x = 2$时,$(x + 1)(x - 1) = 3×1 = 3 ≠ 0$,所以$x = 2$是原方程的解。
(2)方程两边同乘$(x + 1)(x - 2)$,得$(x - 1)(x + 1) - 3 = (x + 1)(x - 2)$,展开得$x² - 1 - 3 = x² - 2x + x - 2$,合并同类项得$x² - 4 = x² - x - 2$,移项得$x² - x² + x = -2 + 4$,解得$x = 2$。检验:当$x = 2$时,$(x + 1)(x - 2) = 3×0 = 0$,所以$x = 2$是增根,原方程无解。
21. (6 分)把下列各式分解因式:
(1)$4x^2 - 16xy + 16y^2$;
(2)$(m^2 + 3m)^2 - (3m + 9)^2$.
答案:21.(1)原式=4(x²−4xy+4y²)=4(x−2y)² (2)原式=(m²+3m+3m+9)(m²+3m−3m−9)=(m²+6m+9)(m²−9)=(m+3)²(m+3)(m−3)=(m+3)³(m−3)
解析:
(1)原式$=4(x^{2}-4xy+4y^{2})=4(x-2y)^{2}$;
(2)原式$=(m^{2}+3m+3m+9)(m^{2}+3m-3m-9)=(m^{2}+6m+9)(m^{2}-9)=(m+3)^{2}(m+3)(m-3)=(m+3)^{3}(m-3)$