22. (8分)如图,在梯形$ABCD$中,$AD // BC$,$DE ⊥ BC$,垂足为$E$,$BE = \frac{1}{2}(AD + BC)$。求证:$AB = DC$。

答案:22.如图,过点$D$作$DF// AB$,交$BC$于点$F$。$\because AD// BC$,$DF// AB$,$\therefore$四边形$ABFD$为平行四边形,$\therefore BF=AD$,$AB=DF$。
$\because BE=\frac{1}{2}(AD+BC)$,$BE=BF+EF$,$\therefore BF+EF=\frac{1}{2}(BF+BF+EF+EC)$,$\therefore EF=EC$。$\because DE⊥ BC$,$\therefore$直线$DE$垂直平分线段$FC$,$\therefore DF=DC$,$\therefore AB=DC$

23. (10分)如图,在矩形$ABCD$中,$E$是$AD$上一点,连接$BE$,$PQ$垂直平分$BE$,分别交$AD$,$BE$,$BC$于点$P$,$O$,$Q$,连接$BP$,$EQ$。
(1)求证:四边形$BPEQ$是菱形;
(2)若$AB = 6$,$F$为$AB$的中点,连接$OF$,$OF + OB = 9$,求$PQ$的长。

答案:23.(1)$\because PQ$垂直平分$BE$,$\therefore QB=QE$,$OB=OE$。$\because$四边形$ABCD$是矩形,$\therefore AD// BC$,$\therefore\angle QBO=\angle PEO$。在$\triangle BOQ$和$\triangle EOP$中,$\begin{cases}\angle QBO=\angle PEO,\\OB=OE,\\\angle BOQ=\angle EOP,\end{cases}$
$\therefore\triangle BOQ\cong\triangle EOP(ASA)$,$\therefore QB=PE$。又$\because BC// AD$,即$QB// PE$,$\therefore$四边形$BPEQ$是平行四边形。又$\because QB=QE$,$\therefore$四边形$BPEQ$是菱形 (2)由(1),得$OB=OE$,$\therefore BE=2OB$。$\because F$为$AB$的中点,$\therefore BF=FA$,$\therefore OF$为$\triangle BAE$的中位线,$\therefore AE=2OF$。$\because OF+OB=9$,$\therefore AE+BE=2OF+2OB=18$。设$AE=x$,则$BE=18 - x$。
$\because$四边形$ABCD$是矩形,$\therefore\angle A=90^{\circ}$,$\therefore$在$Rt\triangle ABE$中,$6^{2}+x^{2}=(18 - x)^{2}$,解得$x=8$。$\therefore AE=8$,$BE=10$,$\therefore OB=\frac{1}{2}BE=5$。设$PE=y$,则$AP=8 - y$。由(1),得四边形$BPEQ$是菱形,$\therefore BP=PE=y$,$PQ=2PO$,$\therefore$在$Rt\triangle ABP$中,$6^{2}+(8 - y)^{2}=y^{2}$,解得$y=\frac{25}{4}$。$\therefore BP=\frac{25}{4}$,$\therefore$在$Rt\triangle BOP$中,$PO=\sqrt{BP^{2}-OB^{2}}=\frac{15}{4}$,$\therefore PQ=2PO=\frac{15}{2}$
24. (12分)在正方形$ABCD$中,$E$是边$CD$上一点(点$E$不与点$C$,$D$重合),连接$BE$。
【感知】如图①,过点$A$作$AF ⊥ BE$,交$BC$于点$F$。易证$\triangle ABF \cong \triangle BCE$(不需要证明)。
【探究】如图②,取$BE$的中点$M$,过点$M$作$FG ⊥ BE$,交$BC$于点$F$,交$AD$于点$G$。
(1)求证:$GF = BE$。
(2)连接$CM$,若$CM = 1$,求$GF$的长。
【应用】
(3)如图③,取$BE$的中点$M$,连接$CM$,过点$C$作$CG ⊥ BE$,交$AD$于点$G$,连接$EG$,$MG$。若$CM = 3$,求四边形$GMCE$的面积。

答案:24.(1)过点$G$作$GP⊥ BC$于点$P$,则$\angle BPG=\angle FPG=90^{\circ}$。$\because$四边形$ABCD$是正方形,$\therefore AB=CB$,$\angle A=\angle ABC=\angle ECB=90^{\circ}$,$\therefore$四边形$ABPG$是矩形,$\angle FPG=\angle ECB$,$\therefore PG=AB$,$\therefore PG=CB$。$\because GP⊥ BC$,$FG⊥ BE$,$\therefore\angle PGF+\angle PFG=90^{\circ}$,$\angle CBE+\angle PFG=90^{\circ}$,$\therefore\angle PGF=\angle CBE$。在$\triangle PGF$和$\triangle CBE$中,$\begin{cases}\angle PGF=\angle CBE,\\PG=CB,\\\angle FPG=\angle ECB,\end{cases}$
$\therefore\triangle PGF\cong\triangle CBE(ASA)$,$\therefore GF=BE$ (2)由(1),得$GF=BE$,$\angle ECB=90^{\circ}$。$\because$在$Rt\triangle BCE$中,$M$是$BE$的中点,$CM=1$,$\therefore BE=2CM=2$,$\therefore GF=2$ (3)$\because$四边形$ABCD$是正方形,$\therefore\angle ECB=90^{\circ}$。$\because$在$Rt\triangle BCE$中,$M$是$BE$的中点,$CM=3$,$\therefore BE=2ME=2CM=6$,$\therefore ME=3$。同(1),得$CG=BE=6$。$\because CG⊥ BE$,$\therefore S_{四边形GMCE}=\frac{1}{2}CG· ME=\frac{1}{2}×6×3=9$