13. 求证:两条对角线相等的梯形是等腰梯形.
答案:13.已知:如图,在梯形ABCD中,$AD // BC$,对角线$AC = BD$.
求证:$AB = DC$.证明:过点D作$DE // AC$,交BC的延长线于点E.$\because AD // BC$,即$AD // CE$,$DE // AC$,$\therefore$四边形ACED是平行四边形,$\therefore AC = DE.\because AC = BD$,$\therefore BD = DE$,$\therefore \angle DBC = \angle E.\because DE // AC$,$\therefore \angle ACB = \angle E$,$\therefore \angle ACB = \angle DBC$.在
$\triangle ABC$和$\triangle DCB$中,$\begin{cases} AC = DB, \\ \angle ACB = \angle DBC, \\ BC = CB,\end{cases}$
$\therefore \triangle ABC \cong \triangle DCB(SAS)$,$\therefore AB = DC$
