11. (1) 已知$x = \sqrt{2} + 1$,求代数式$x^{2} - 2x + 2$的值;
(2) 已知$x = \frac{\sqrt{5} - 1}{2}$,$y = \frac{\sqrt{5} + 1}{2}$,求$x^{2} + xy + y^{2}$的值。
答案:11.(1)$\because x = \sqrt{2} + 1$,$\therefore x - 1 = \sqrt{2}$,$\therefore (x - 1)^2 = 2$,即$x^2 - 2x + 1 = 2$,$\therefore x^2 - 2x = 1$,$\therefore x^2 - 2x + 2 = 1 + 2 = 3$
(2)$\because x = \frac{\sqrt{5} - 1}{2}$,$y = \frac{\sqrt{5} + 1}{2}$,$\therefore x + y = \frac{\sqrt{5} - 1}{2} + \frac{\sqrt{5} + 1}{2} = \sqrt{5}$,$xy = \frac{\sqrt{5} - 1}{2} × \frac{\sqrt{5} + 1}{2} = 1$,$\therefore x^2 + xy + y^2 = x^2 + 2xy + y^2 - xy = (x + y)^2 - xy = (\sqrt{5})^2 - 1 = 4$
12. 设$6 - \sqrt{10}$的整数部分为$a$,小数部分为$b$,求$(2a + \sqrt{10})b$的值。
答案:12.$\because 3 < \sqrt{10} < 4$,$\therefore -4 < -\sqrt{10} < -3$,$\therefore 2 < 6 - \sqrt{10} < 3$,$\therefore 6 - \sqrt{10}$的整数部分$a = 2$,小数部分$b = 6 - \sqrt{10} - 2 = 4 - \sqrt{10}$,$\therefore (2a + \sqrt{10})b = (2 × 2 + \sqrt{10})(4 - \sqrt{10}) = (4 + \sqrt{10})(4 - \sqrt{10}) = 4^2 - (\sqrt{10})^2 = 6$
13. (2025·南通)我国南宋数学家秦九韶曾提出利用三角形的三边求面积的公式:一个三角形的三边长分别为$a$,$b$,$c$,三角形的面积$S = \sqrt{\frac{1}{4}[a^{2}b^{2} - (\frac{a^{2} + b^{2} - c^{2}}{2})^{2}]}$。若$a = 2\sqrt{2}$,$b = 3$,$c = 1$,则$S$的值为
$\sqrt{2}$
。
答案:13.$\sqrt{2}$ 解析:由题意,得$a^2 = 8$,$b^2 = 9$,$c^2 = 1$,$\therefore a^2b^2 = 72$,$\frac{a^2 + b^2 - c^2}{2} = 8$,$\therefore S = \sqrt{\frac{1}{4} × (72 - 8^2)} = \sqrt{2}$.
解析:
$a^2=(2\sqrt{2})^2=8$,$b^2=3^2=9$,$c^2=1^2=1$,
$a^2b^2=8×9=72$,
$\frac{a^2 + b^2 - c^2}{2}=\frac{8 + 9 - 1}{2}=8$,
$S = \sqrt{\frac{1}{4}×(72 - 8^2)}=\sqrt{\frac{1}{4}×(72 - 64)}=\sqrt{\frac{1}{4}×8}=\sqrt{2}$。