26. (14分)如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,BC=10 cm,AD=8 cm.点P从点B出发,在线段BC上以3 cm/s的速度向点C匀速运动,与此同时,垂直于AD的直线$m$从底边BC出发,以2 cm/s的速度沿DA方向匀速平移,分别交AB、AC、AD于点E、F、H,当点P到达点C时,点P与直线$m$同时停止运动,设运动时间为$t(s)(t>0)$.
(1) 当$t=2s$时,连接DE、DF,求证:四边形AEDF为菱形.
(2) 在整个运动过程中,求当所形成的△PEF的面积最大时,线段BP的长.
(3) 是否存在某一时刻$t$,使△PEF为直角三角形?若存在,请求出此时刻$t$的值;若不存在,请说明理由.

答案:26. (1) 证明:当$t = 2$时,$DH = AH = 4$,则H是AD的中点,如图①.

又$\because EF \perp AD$,$\therefore EF$为AD的垂直平分线,$\therefore AE = DE$,$AF = DF$。$\because AB = AC$,$AD \perp BC$,$\therefore \angle B = \angle C$。$\therefore EF // BC$,$\therefore \angle AEF = \angle B$,$\angle AFE = \angle C$,$\therefore \angle AEF = \angle AFE$,$\therefore AE = AF$,$\therefore AE = AF = DE = DF$,即四边形AEDF为菱形 (2) 如图②.

由(1)知$EF // BC$,$\therefore \triangle AEF \sim \triangle ABC$,$\therefore \frac{EF}{BC} = \frac{AH}{AD}$,即$\frac{EF}{10} = \frac{8 - 2t}{8}$,解得$EF = 10 - \frac{5}{2}t$。$S_{\triangle PEF} = \frac{1}{2}EF · DH = \frac{1}{2}(10 - \frac{5}{2}t) · 2t = -\frac{5}{2}(t - 2)^2 + 10$。$\therefore$当$t = 2s$时,$S_{\triangle PEF}$取最大值,最大值为10,此时$BP = 3t = 6(cm)$ (3) 存在。理由是:① 若点E为直角顶点,如图③,此时$PE // AD$,$PE = DH = 2t$,$BP = 3t$。$\because PE // AD$,$\therefore \frac{PE}{AD} = \frac{BP}{BD}$,即$\frac{2t}{8} = \frac{3t}{5}$,此比例式不成立,故此种情形不存在。② 若点F为直角顶点,如图④,此时$PE // AD$,$PF = DH = 2t$,$BP = 3t$,$CP = 10 - 3t$。$\because PF // AD$,$\therefore \frac{PF}{AD} = \frac{CP}{CD}$,即$\frac{2t}{8} = \frac{10 - 3t}{5}$,解得$t = \frac{40}{17}$ ③ 若点P为直角顶点,如图⑤。过点E作$EM \perp BC$,垂足为M,过点F作$FN \perp BC$,垂足为N,则$EM = FN = DH = 2t$,$EM // FN // AD$。$\because EM // AD$,$\therefore \frac{EM}{AD} = \frac{BM}{BD}$,即$\frac{2t}{8} = \frac{BM}{5}$,解得$BM = \frac{5}{4}t$,$\therefore PM = BP - BM = 3t - \frac{5}{4}t = \frac{7}{4}t$。在$Rt\triangle EMP$中,由勾股定理,得$PE^2 = EM^2 + PM^2 = (2t)^2 + (\frac{7}{4}t)^2 = \frac{113}{16}t^2$。$\because FN // AD$,$\therefore \frac{FN}{AD} = \frac{CN}{CD}$,即$\frac{2t}{8} = \frac{CN}{5}$,解得$CN = \frac{5}{4}t$,$\therefore PN = BC - BP - CN = 10 - 3t - \frac{5}{4}t = 10 - \frac{17}{4}t$。在$Rt\triangle FNP$中,由勾股定理,得$PF^2 = FN^2 + PN^2 = (2t)^2 + (10 - \frac{17}{4}t)^2 = \frac{353}{16}t^2 - 85t + 100$。在$Rt\triangle PEF$中,由勾股定理,得$EF^2 = PE^2 + PF^2$,即$(10 - \frac{5}{2}t)^2 = (\frac{113}{16}t^2) + (\frac{353}{16}t^2 - 85t + 100)$。化简,得$\frac{233}{8}t^2 - 35t = 0$,解得$t = \frac{280}{233}$或$t = 0$(舍去)。$\therefore t = \frac{280}{233}$。综上所述,当$t = \frac{40}{17}s$或$t = \frac{280}{233}s$时,$\triangle PEF$为直角三角形