9. 如图,在$ Rt \triangle ABC$中$,\angle C=90^{\circ},AB=13,BC=5$,结合尺规作图痕迹提供的信息,可得线段$AQ$的长为 (
A
)

A.$2\sqrt{13}$
B.$2\sqrt{15}$
C.6
D.$\frac{120}{13}$
答案:9.A 解析:
∵在Rt△ABC中,∠C = 90°,AB = 13,BC = 5,
∴AC = √{13² - 5²} = 12.由作图痕迹可知,BG平分∠ABC,即∠CBG = ∠ABG.如图,设BG,AC交于点M,过点M作MN⊥AB于点N,则CM = MN.设CM = MN = x.
∵S_△ABC = S_△MBC + S_△ABM,
∴$\frac{1}{2}BC·AC = \frac{1}{2}BC·CM + \frac{1}{2}AB·MN,$即5×12 = 5x + 13x,解得$x = \frac{10}{3},$即$CM = \frac{10}{3},$则$BM = √{5² + (\frac{10}{3})²} = \frac{5}{3}√{13}.$由作图痕迹可知,AQ⊥BH,
∴∠AQB = ∠C = 90°.
∵∠CBG = ∠ABG,
∴△ABQ∽△MBC.
∴$\frac{AQ}{MC} = \frac{AB}{MB},$即$\frac{AQ}{\frac{10}{3}} = \frac{13}{\frac{5}{3}√{13}},$解得AQ = 2√{13}.
