21. 在正方形$ ABCD$中,点$ P$在边$ BC$上(不与端点$ B$,$ C$重合),点$ B$关于直线$ AP$的对称点为$ E$,$ BE$与$ AP$交于点$ O$.
(1)如图①,连接$ DE$,则$\angle BED$的度数为
$135^{\circ}$
.
(2)如图②,若$ AB=4$,$ P$是$ BC$的中点,连接$ CE$,求$ CE$的长.
(3)如图③,过点$ D$作$ DF\perp BE$,交直线$ BE$于点$ F$,连接$ OC$,$ CF$. 若$ OC\perp CF$,求$\tan \angle BAP$的值.

答案:21.(1)$135^{\circ}$ 解析:如图①,连接AE.$\because$点B关于直线AP的对称点为E,$\therefore AB=AE.\because$四边形ABCD是正方形,$\therefore AB=AD$,$\angle BAD=90^{\circ}.\therefore AB=AE=AD.\therefore\angle ABE=\angle AEB$,$\angle AED=\angle ADE.\therefore\angle ABE+\angle ADE=\angle AEB+\angle AED.\because\angle BAD+\angle ABE+\angle AEB+\angle AED+\angle ADE=360^{\circ}$,即$90^{\circ}+2(\angle AEB+\angle AED)=360^{\circ}$,$\therefore\angle AEB+\angle AED=135^{\circ}$,即$\angle BED$的度数为$135^{\circ}$.
(2)如图②,连接PE.$\because$四边形ABCD是正方形,$\therefore AB=BC=4.\because P$是BC的中点,$\therefore BP=PC=\frac{1}{2}BC=2.\because$点B关于直线AP的对称点为E,$\therefore BP=PE$,$BE\perp AP$,$BO=OE.\therefore BP=PE=PC.\therefore$易得$\angle BEC=90^{\circ}.\because AB=4$,$BP=2$,$\therefore AP=\sqrt{AB^{2}+BP^{2}}=\sqrt{4^{2}+2^{2}}=2\sqrt{5}.\because\cos\angle APB=\frac{BP}{AP}=\frac{OP}{BP}$,$\therefore\frac{2}{2\sqrt{5}}=\frac{OP}{2}.\therefore OP=\frac{2\sqrt{5}}{5}.\because BO=OE$,$BP=PC$,$\therefore CE=2OP=\frac{4\sqrt{5}}{5}$
(3)如图③,设BF与CD交于点H.
$\because DF\perp BF$,$OC\perp CF$,四边形ABCD是正方形,$\therefore\angle DFB=90^{\circ}=\angle BCD=\angle OCF.\therefore\angle BCD-\angle OCD=\angle OCF-\angle OCD$,即$\angle BCO=\angle DCF$.又$\because\angle BHC=\angle DHF$,$\angle CBO=\angle CDF$.又$\because BC=DC$,$\therefore\triangle BCO\cong\triangle DCF.\therefore BO=DF$.又$\because\angle BOP=\angle DFH=90^{\circ}$,$\angle CBO=\angle CDF$,$\therefore\triangle BOP\cong\triangle DFH.\therefore BP=DH.\because\angle CBH+\angle BPA=90^{\circ}=\angle BPA+\angle BAP$,$\therefore\angle BAP=\angle CBH$.又$\because AB=BC$,$\angle ABP=\angle BCH=90^{\circ}$,$\therefore\triangle ABP\cong\triangle BCH.\therefore BP=CH$.
$\therefore BP=CH=DH.\therefore BP=\frac{1}{2}CD.\because$四边形ABCD是正方形,$\therefore\angle ABP=90^{\circ}$,$AB=CD.\therefore BP=\frac{1}{2}AB.\therefore$在$Rt\triangle ABP$中,$\tan\angle BAP=\frac{BP}{AB}=\frac{1}{2}$
