6. (教材 P75 例 4 变式)(2024·绥化)如图,用热气球的探测器测一栋楼的高度,从热气球上的点$A$测得该楼顶部点$C$的仰角为$60^{\circ}$,测得底部点$B$的俯角为$45^{\circ}$,点$A$与楼$BC$的水平距离$AD = 50\mathrm{m}$,则这栋楼的高度为
$(50 + 50\sqrt{3})$
$\mathrm{m}$(结果保留根号).

]
答案:6.$(50 + 50\sqrt{3})$
解析:
解:在$Rt\triangle ADC$中,$\angle CAD=60°$,$AD=50\mathrm{m}$,
$\tan60°=\frac{CD}{AD}$,
$CD=AD·\tan60°=50×\sqrt{3}=50\sqrt{3}\mathrm{m}$。
在$Rt\triangle ADB$中,$\angle BAD=45°$,$AD=50\mathrm{m}$,
$\tan45°=\frac{BD}{AD}$,
$BD=AD·\tan45°=50×1=50\mathrm{m}$。
楼的高度$BC=CD+BD=50\sqrt{3}+50=(50+50\sqrt{3})\mathrm{m}$。
$(50 + 50\sqrt{3})$
7. (2025·内蒙古)如图,因地形原因,湖泊两端$A$,$B$间的距离不易测量,某科技小组需要用无人机进行测量,他们将无人机上升并飞行至距湖面$90\mathrm{m}$的点$C$处,从点$C$测得点$A$的俯角为$60^{\circ}$,点$B$的俯角为$30^{\circ}$($A$,$B$,$C$
三点在同一竖直平面内),则湖泊两端$A$,$B$间的距离为
$120\sqrt{3}$
$\mathrm{m}$(结果保留根号).
]

答案:7.$120\sqrt{3}$
解析:
解:过点$C$作$CD \perp AB$于点$D$,则$CD = 90\space \mathrm{m}$。
在$\mathrm{Rt}\triangle ACD$中,$\angle CAD=60^{\circ}$,$\tan 60^{\circ}=\dfrac{CD}{AD}$,$AD=\dfrac{CD}{\tan 60^{\circ}}=\dfrac{90}{\sqrt{3}}=30\sqrt{3}\space \mathrm{m}$。
在$\mathrm{Rt}\triangle BCD$中,$\angle CBD=30^{\circ}$,$\tan 30^{\circ}=\dfrac{CD}{BD}$,$BD=\dfrac{CD}{\tan 30^{\circ}}=\dfrac{90}{\dfrac{\sqrt{3}}{3}}=90\sqrt{3}\space \mathrm{m}$。
$AB=AD + BD=30\sqrt{3}+90\sqrt{3}=120\sqrt{3}\space \mathrm{m}$。
$120\sqrt{3}$
8. (2025·内江)在综合与实践活动中,某学习小组计划测量内江麻柳坝大桥桥塔$AD$的高度(如图①).他们设计了如下方案:如图②,点$B$,$D$,$C$依次在同一条水平直线上,在$B$处测得桥塔顶部$A$的仰角($\angle ABD$)为$45^{\circ}$,在$C$处测得桥塔顶部$A$的仰角($\angle ACD$)为$30^{\circ}$,又测得$BC = 80\mathrm{m}$,$AD \perp BC$,垂足为$D$,求桥塔$AD$的高度(结果保留根号).

]
答案:8.设$AD = xm$。$\because AD\perp BC$,$\therefore \angle ADB = \angle ADC = 90^{\circ}$。在$ Rt\triangle ABD$中,$\angle ABD = 45^{\circ}$,$\therefore BD = \frac{AD}{\tan\angle ABD} = \frac{x}{\tan45^{\circ}} = x(m)$。在$ Rt\triangle ACD$中,$\angle ACD = 30^{\circ}$,$\therefore CD = \frac{AD}{\tan\angle ACD} = \frac{x}{\tan30^{\circ}} = \sqrt{3}x(m)$。$\because BC = BD + CD = 80m$,$\therefore x + \sqrt{3}x = 80$,解得$x = 40\sqrt{3} - 40$。$\therefore AD = (40\sqrt{3} - 40)m$。$\therefore$桥塔AD的高度为$(40\sqrt{3} - 40)m$
9. (2025·泸州)如图,在水平地面上有两座建筑物$AD$,$BC$,其中$BC = 18\mathrm{m}$.从点$A$,$B$之间的点$E$(点$A$,$E$,$B$在同一水平线上)测得点$D$,$C$的仰角分别为$75^{\circ}$和$30^{\circ}$,从点$C$测得点$D$的仰角为$30^{\circ}$.求:
(1)$\angle CDE$的度数;
(2)建筑物$AD$的高度(结果保留根号).

]
答案:9.(1)如图,过点C作$CF\perp AD$,垂足为F。由题意,得$CF// AB$,$\therefore \angle FCE = \angle CEB = 30^{\circ}$。$\because \angle DCF = 30^{\circ}$,$\therefore \angle DCE = \angle DCF + \angle FCE = 60^{\circ}$。$\because \angle AED = 75^{\circ}$,$\therefore \angle DEC = 180^{\circ} - \angle AED - \angle CEB = 75^{\circ}$。$\therefore \angle CDE = 180^{\circ} - \angle DEC - \angle DCE = 45^{\circ}$
(2)如图,过点E作$EG\perp CD$,垂足为G。由题意,得$AF = BC = 18m$,在$ Rt\triangle EBC$中,$BC = 18m$,$\angle CEB = 30^{\circ}$,$\therefore CE = 2BC = 36m$。在$ Rt\triangle ECG$中,$\angle ECD = 60^{\circ}$,$\therefore CG = CE·\cos60^{\circ} = 36×\frac{1}{2} = 18(m)$,$EG = CE·\sin60^{\circ} = 36×\frac{\sqrt{3}}{2} = 18\sqrt{3}(m)$。在$ Rt\triangle DEG$中,由(1),得$\angle EDG = 45^{\circ}$,$\therefore DG = \frac{EG}{\tan45^{\circ}} = 18\sqrt{3}m$。$\therefore CD = CG + DG = (18 + 18\sqrt{3})m$。在$ Rt\triangle DFC$中,$\angle DCF = 30^{\circ}$,$\therefore DF = \frac{1}{2}CD = (9 + 9\sqrt{3})m$。$\therefore AD = AF + DF = 18 + 9 + 9\sqrt{3} = (27 + 9\sqrt{3})m$。$\therefore$建筑物AD的高度为$(27 + 9\sqrt{3})m$
