零五网 全部参考答案 通城学典课时作业本答案 2026年通城学典课时作业本九年级数学下册人教版南通专版 第27页解析答案
9. 已知三个数$2$,$\sqrt{2}$,$4$,再添加一个数,使这四个数成比例,那么添加的数是 (
D
)

A.$2\sqrt{2}$
B.$2\sqrt{2}$或$\frac{\sqrt{2}}{2}$
C.$2\sqrt{2}$,$4\sqrt{2}$或$8\sqrt{2}$
D.$2\sqrt{2}$,$\frac{\sqrt{2}}{2}$或$4\sqrt{2}$
答案:9.D
解析:
设添加的数为$x$。
情况一:$2:\sqrt{2}=4:x$,则$2x=4\sqrt{2}$,解得$x=2\sqrt{2}$;
情况二:$2:\sqrt{2}=x:4$,则$\sqrt{2}x=8$,解得$x=\frac{8}{\sqrt{2}}=4\sqrt{2}$;
情况三:$2:4=x:\sqrt{2}$,则$4x=2\sqrt{2}$,解得$x=\frac{\sqrt{2}}{2}$。
添加的数是$2\sqrt{2}$,$\frac{\sqrt{2}}{2}$或$4\sqrt{2}$。
D
10. 如图,将矩形$ABCD$沿$AE$翻折,使点$B$恰好落在边$AD$上的点$F$处,再沿$EF$将矩形$ABCD$剪开,所得的另一个矩形$ECDF$和原来的矩形$ABCD$相似,则原来的矩形$ABCD$的宽$AB$与长$AD$的比值为
$\frac{\sqrt{5}-1}{2}$
.

答案:10.$\frac{\sqrt{5}-1}{2}$
解析:
解:设$AB = x$,$AD = y$,则$AF = AB = x$,$FD = AD - AF = y - x$,$EC = BC - BE = y - x$,$CD = AB = x$。
因为矩形$ECDF$和矩形$ABCD$相似,所以$\frac{FD}{AB} = \frac{CD}{AD}$,即$\frac{y - x}{x} = \frac{x}{y}$。
整理得$y^2 - xy - x^2 = 0$,设$\frac{x}{y} = k$,则$y = \frac{x}{k}$,代入方程得$(\frac{x}{k})^2 - x · \frac{x}{k} - x^2 = 0$,两边同时除以$x^2$得$\frac{1}{k^2} - \frac{1}{k} - 1 = 0$,即$1 - k - k^2 = 0$,$k^2 + k - 1 = 0$。
解得$k = \frac{-1 \pm \sqrt{5}}{2}$,因为$k > 0$,所以$k = \frac{\sqrt{5} - 1}{2}$,即$\frac{AB}{AD} = \frac{\sqrt{5} - 1}{2}$。
$\frac{\sqrt{5} - 1}{2}$
11.(教材 P28 习题 27.1 第 6 题变式)如图,在矩形$ABCD$和矩形$A^{\prime}B^{\prime}C^{\prime}D^{\prime}$中,$AB = 16$,$AD = 10$,$A^{\prime}D^{\prime}=6$,矩形$A^{\prime}B^{\prime}C^{\prime}D^{\prime}$的面积为$57.6$,那么这两个矩形相似吗?

答案:11.
∵矩形$A'B'C'D'$的面积为57.6,$A'D' = 6$,
∴$A'B' = 9.6$.
∵$\frac{AB}{A'B'} = \frac{16}{9.6} = \frac{5}{3}$.根据矩形的性质知,$\frac{DC}{D'C'} = \frac{AB}{A'B'} = \frac{5}{3}$.同理,得$\frac{BC}{B'C'} = \frac{AD}{A'D'} = \frac{10}{6} = \frac{5}{3}$.
∴$\frac{AB}{A'B'} = \frac{AD}{A'D'} = \frac{DC}{D'C'} = \frac{BC}{B'C'} = \frac{5}{3}$.
∵矩形的各内角都是$90^{\circ}$,
∴矩形ABCD与矩形$A'B'C'D'$相似
12. 如图,$E$是菱形$ABCD$的对角线$CA$的延长线上任意一点,以线段$AE$为边,向下作菱形$AEFG$,且菱形$AEFG$与菱形$ABCD$相似,连接$EB$,$GD$.
(1)求证:$EB = GD$;
(2)若$\angle DAB = 60°$,$AB = 2$,$AG = \sqrt{3}$,求$GD$的长.

答案:12.(1)
∵菱形AEFG与菱形ABCD相似,
∴$\angle GAE = \angle DAB$.
∴$\angle GAE + \angle GAB = \angle DAB + \angle GAB$,即$\angle EAB = \angle GAD$.
∵四边形AEFG和四边形ABCD均是菱形,
∴$AE = AG$,$AB = AD$.
∴$\triangle ABE \cong \triangle ADG$.
∴$EB = GD$(2)连接BD,交AC于点O.
∵四边形ABCD是菱形,
∴$AD = AB = 2$,$BO \perp AC$,$BO = \frac{1}{2}BD$.
∵$\angle DAB = 60^{\circ}$,
∴$\triangle ABD$是等边三角形.
∴$BD = 2$.
∴$BO = 1$.在$Rt\triangle AOB$中,$AO = \sqrt{AB^{2} - BO^{2}} = \sqrt{2^{2} - 1^{2}} = \sqrt{3}$.
∴$EO = AE + AO = AG + AO = 2\sqrt{3}$.在$Rt\triangle BOE$中,$EB = \sqrt{EO^{2} + BO^{2}} = \sqrt{(2\sqrt{3})^{2} + 1^{2}} = \sqrt{13}$,
∴$GD = EB = \sqrt{13}$
13.(新考法·新定义题)
(1)若点$P$将线段$AB$分割成两条线段$AP$,$BP$,使$AP > BP$,且$\frac{AP}{AB}=\frac{BP}{AP}$,则$P$就是线段$AB$的黄金分割点,此时$\frac{AP}{AB}$的值为
$\frac{\sqrt{5}-1}{2}$
.
(2)如图,在$Rt\triangle ABC$中,$\angle B = 90°$,$AB = 2BC$,现以点$C$为圆心,$CB$长为半径画弧,交边$AC$于点$D$,再以点$A$为圆心,$AD$长为半径画弧,交边$AB$于点$E$. 求证:$E$是线段$AB$的黄金分割点.

答案:13.(1)$\frac{\sqrt{5}-1}{2}$解析:不妨设AB的长为1,P为线段AB上符合题意的一点,$AP = x$,则$BP = 1 - x$.根据题意,得$\frac{x}{1} = \frac{1 - x}{x}$,解得$x_1 = \frac{\sqrt{5}-1}{2}$,$x_2 = \frac{-\sqrt{5}-1}{2}$(不合题意,舍去).
∴$\frac{AP}{AB} = \frac{\sqrt{5}-1}{2}$.
(2)设$BC = a$.
∵$\angle B = 90^{\circ}$,$AB = 2BC$,
∴$AB = 2a$,$AC = \sqrt{5}a$.由题意,得$CD = BC$,$AE = AD$.
∴$CD = a$.
∴$AE = AD = AC - CD = \sqrt{5}a - a$.
∴$BE = AB - AE = 3a - \sqrt{5}a$.
∴$\frac{AE}{AB} = \frac{\sqrt{5}a - a}{2a} = \frac{\sqrt{5}-1}{2}$,$\frac{BE}{AE} = \frac{3a - \sqrt{5}a}{\sqrt{5}a - a} = \frac{\sqrt{5}-1}{2}$.
∵$\frac{AE}{AB} = \frac{BE}{AE}$,即E是线段AB的黄金分割点
上一页 下一页