1. 如图,在 $Rt\triangle ABC$ 中,$AB =  AC$,$\angle BAC =  90^{\circ}$,点 $D$,$E$ 分别在边 $BC$ 及其延长线上,$BD^{2}+CE^{2}= DE^{2}$,$F$ 为 $\triangle ABC$ 外一点,且 $FB\perp BC$,$FA\perp AE$。有下列结论:①$AF =  AE$;②$\angle DAE =  45^{\circ}$;③$S_{\triangle ADE}= \frac{1}{4}AD\cdot EF$;④$CE^{2} + BE^{2}= 2AE^{2}$,其中,正确的是(
A
)

A.①②③④
B.①②④
C.①③④
D.①②
解析:
证明:  
① $AF = AE$  
∵ $AB = AC$, $\angle BAC = 90°$,
∴ $\angle ABC = \angle ACB = 45°$.  
∵ $FB \perp BC$,
∴ $\angle FBC = 90°$, $\angle ABF = \angle FBC - \angle ABC = 45°$,
∴ $\angle ABF = \angle ACE$.  
∵ $FA \perp AE$,
∴ $\angle FAE = 90° = \angle BAC$,
∴ $\angle FAB = \angle EAC$.  
在 $\triangle ABF$ 和 $\triangle ACE$ 中:  
$\begin{cases}\angle FAB = \angle EAC \\AB = AC \\\angle ABF = \angle ACE\end{cases}$  
∴ $\triangle ABF \cong \triangle ACE$ (ASA),
∴ $AF = AE$.  
② $\angle DAE = 45°$  
由①得 $BF = CE$,
∵ $BD^2 + CE^2 = DE^2$,
∴ $BD^2 + BF^2 = DE^2$.  
∵ $\angle FBD = 90°$,
∴ $FD^2 = BD^2 + BF^2 = DE^2$,
∴ $FD = DE$.  
在 $\triangle AFD$ 和 $\triangle AED$ 中:  
$\begin{cases}AF = AE \\AD = AD \\FD = DE\end{cases}$  
∴ $\triangle AFD \cong \triangle AED$ (SSS),
∴ $\angle FAD = \angle EAD$.  
∵ $\angle FAE = 90°$,
∴ $\angle DAE = \frac{1}{2}\angle FAE = 45°$.  
③ $S_{\triangle ADE} = \frac{1}{4}AD \cdot EF$  
由①得 $AF = AE$, $\angle FAE = 90°$,
∴ $\triangle AEF$ 为等腰直角三角形, $EF = \sqrt{2}AE$, 设 $AD$ 与 $EF$ 交于点 $O$, 则 $AD \perp EF$, $AO = \frac{1}{2}EF$.  
$S_{\triangle ADE} = \frac{1}{2}AD \cdot AO = \frac{1}{2}AD \cdot \frac{1}{2}EF = \frac{1}{4}AD \cdot EF$.  
④ $CE^2 + BE^2 = 2AE^2$  
由①得 $BF = CE$, 在 $Rt\triangle BFE$ 中, $BF^2 + BE^2 = EF^2$,
∴ $CE^2 + BE^2 = EF^2$.  
∵ $\triangle AEF$ 为等腰直角三角形, $EF^2 = AE^2 + AF^2 = 2AE^2$,
∴ $CE^2 + BE^2 = 2AE^2$.  
综上, ①②③④均正确.  
答案:A