4. (2024·长沙)如图,点 $ C $ 在线段 $ AD $ 上,$ AB =  AD $,$ \angle B =  \angle D $,$ BC =  DE $.
(1) 求证:$ \triangle ABC \cong \triangle ADE $;
(2) 若 $ \angle BAC =  60^{\circ} $,求 $ \angle ACE $ 的度数.

答案:(1)证明:在$\triangle ABC$和$\triangle ADE$中
$\left\{\begin{array}{l} BC=DE,\\ ∠B=∠D,\\ AB=AD,\end{array}\right.$
$\therefore \triangle ABC\cong \triangle ADE(SAS).$
(2)解:由(1)得$\triangle ABC\cong \triangle ADE,$
$\therefore AC=AE,∠BAC=∠DAE=60^{\circ }.$
$\because ∠AEC=∠ACE,$
$\because ∠AEC+∠ACE=2∠ACE=180^{\circ }-∠DAE=120^{\circ },$
$\therefore ∠ACE=60^{\circ }.$