1. 计算$\sqrt{15}×\sqrt{6}$的结果是 (
D
)
A.3
B.$\sqrt{21}$
C.$9\sqrt{10}$
D.$3\sqrt{10}$
答案:1. D
解析:
$\sqrt{15} × \sqrt{6} = \sqrt{15 × 6} = \sqrt{90} = \sqrt{9 × 10} = 3\sqrt{10}$,结果为D。
2. 计算:$\sqrt{27}×\sqrt{\frac{2}{3}} =$
$ 3\sqrt{2} $
.
答案:2. $ 3\sqrt{2} $
解析:
$\sqrt{27} × \sqrt{\frac{2}{3}} = \sqrt{27 × \frac{2}{3}} = \sqrt{18} = 3\sqrt{2}$
3. 若$\sqrt{3}·\sqrt{\frac{6}{x}}$是整数,则整数$x$的值是
2 或 18
.
答案:3. 2 或 18
解析:
$\sqrt{3}·\sqrt{\frac{6}{x}}=\sqrt{\frac{18}{x}}=\frac{3\sqrt{2x}}{x}$,因为结果是整数,且$x$为整数,所以$\sqrt{2x}$必为整数,设$\sqrt{2x}=k$($k$为整数),则$2x=k^2$,$x=\frac{k^2}{2}$。当$k=2$时,$x=\frac{4}{2}=2$;当$k=6$时,$x=\frac{36}{2}=18$。故整数$x$的值是2或18。
4. 矩形的长和宽分别是 20 cm,10 cm,则这个矩形的对角线的长为
$ 10\sqrt{5} $
cm.
答案:4. $ 10\sqrt{5} $
解析:
解:矩形的对角线长为 $\sqrt{20^2 + 10^2} = \sqrt{400 + 100} = \sqrt{500} = 10\sqrt{5}\ \mathrm{cm}$.
5. 计算:
(1)$\sqrt{6}×\sqrt{60}$;
(2)$2\sqrt{5}×3\sqrt{15}$;
(3)$\sqrt{144}×3\sqrt{\frac{1}{8}}$;
(4)$3\sqrt{6}×4\sqrt{\frac{9}{2}}$;
(5)$4\sqrt{xy}×\sqrt{\frac{1}{y}}$;
(6)$3\sqrt{5a}×2\sqrt{10b}$.
答案:5. (1)$ 6\sqrt{10} $ (2)$ 30\sqrt{3} $ (3)$ 9\sqrt{2} $ (4)$ 36\sqrt{3} $ (5)$ 4\sqrt{x} $ (6)$ 30\sqrt{2ab} $
解析:
(1)$\sqrt{6}×\sqrt{60}=\sqrt{6×60}=\sqrt{360}=\sqrt{36×10}=6\sqrt{10}$;
(2)$2\sqrt{5}×3\sqrt{15}=2×3×\sqrt{5×15}=6×\sqrt{75}=6×5\sqrt{3}=30\sqrt{3}$;
(3)$\sqrt{144}×3\sqrt{\frac{1}{8}}=12×3\sqrt{\frac{1}{8}}=36×\frac{\sqrt{2}}{4}=9\sqrt{2}$;
(4)$3\sqrt{6}×4\sqrt{\frac{9}{2}}=3×4×\sqrt{6×\frac{9}{2}}=12×\sqrt{27}=12×3\sqrt{3}=36\sqrt{3}$;
(5)$4\sqrt{xy}×\sqrt{\frac{1}{y}}=4\sqrt{xy×\frac{1}{y}}=4\sqrt{x}$;
(6)$3\sqrt{5a}×2\sqrt{10b}=3×2×\sqrt{5a×10b}=6×\sqrt{50ab}=6×5\sqrt{2ab}=30\sqrt{2ab}$
6. 化简:
(1)$\sqrt{(x + 2y)^2(x - y)^2}(0 < x < y)$;
(2)$\sqrt{125y^2z^3×25y^3z^2}$;
(3)$\sqrt{a^5 + 2a^3b^2 + ab^4}$;
(4)$\sqrt{24a^3 + 32a^2}(a > 0)$.
答案:6. (1)$ (x + 2y)(y - x) $ (2)$ 25y^{2}z^{2}\sqrt{5yz} $ (3)$ (a^{2} + b^{2})\sqrt{a} $ (4)$ 2a\sqrt{6a + 8} $
解析:
(1) $\because 0 < x < y$,$\therefore x + 2y > 0$,$x - y < 0$,$\sqrt{(x + 2y)^2(x - y)^2} = |x + 2y| · |x - y| = (x + 2y)(y - x)$
(2) $\sqrt{125y^2z^3 × 25y^3z^2} = \sqrt{3125y^5z^5} = \sqrt{625 × 5 × y^4 × y × z^4 × z} = 25y^2z^2\sqrt{5yz}$
(3) $\sqrt{a^5 + 2a^3b^2 + ab^4} = \sqrt{a(a^4 + 2a^2b^2 + b^4)} = \sqrt{a(a^2 + b^2)^2} = (a^2 + b^2)\sqrt{a}$
(4) $\sqrt{24a^3 + 32a^2} = \sqrt{8a^2(3a + 4)} = 2a\sqrt{2(3a + 4)} = 2a\sqrt{6a + 8}$