1. 小颖在计算 $3×(4 + 1)×(4^{2}+1)$ 时,把 3 写成 $(4 - 1)$ 后,发现可以连续运用平方差公式进行计算. 计算:$(2 + 1)(2^{2}+1)(2^{4}+1)(2^{8}+1)···(2^{128}+1)+1=$(
A
)
A.$2^{256}$
B.$2^{256}+2$
C.$2^{256}-1$
D.$2^{128}$
答案:1. A
解析:
$(2 + 1)(2^{2}+1)(2^{4}+1)(2^{8}+1)···(2^{128}+1)+1$
$=(2 - 1)(2 + 1)(2^{2}+1)(2^{4}+1)(2^{8}+1)···(2^{128}+1)+1$
$=(2^{2}-1)(2^{2}+1)(2^{4}+1)(2^{8}+1)···(2^{128}+1)+1$
$=(2^{4}-1)(2^{4}+1)(2^{8}+1)···(2^{128}+1)+1$
$=(2^{8}-1)(2^{8}+1)···(2^{128}+1)+1$
$=···$
$=(2^{128}-1)(2^{128}+1)+1$
$=2^{256}-1 + 1$
$=2^{256}$
A
2. (2024·铜山区期中)计算:$(1+\dfrac{1}{2})(1+\dfrac{1}{2^{2}})(1+\dfrac{1}{2^{4}})(1+\dfrac{1}{2^{8}})(1+\dfrac{1}{2^{16}})+\dfrac{1}{2^{31}}=$
2
.
答案:2. 2
解析:
$(1+\dfrac{1}{2})(1+\dfrac{1}{2^{2}})(1+\dfrac{1}{2^{4}})(1+\dfrac{1}{2^{8}})(1+\dfrac{1}{2^{16}})+\dfrac{1}{2^{31}}$
$=2×(1-\dfrac{1}{2})(1+\dfrac{1}{2})(1+\dfrac{1}{2^{2}})(1+\dfrac{1}{2^{4}})(1+\dfrac{1}{2^{8}})(1+\dfrac{1}{2^{16}})+\dfrac{1}{2^{31}}$
$=2×(1-\dfrac{1}{2^{2}})(1+\dfrac{1}{2^{2}})(1+\dfrac{1}{2^{4}})(1+\dfrac{1}{2^{8}})(1+\dfrac{1}{2^{16}})+\dfrac{1}{2^{31}}$
$=2×(1-\dfrac{1}{2^{4}})(1+\dfrac{1}{2^{4}})(1+\dfrac{1}{2^{8}})(1+\dfrac{1}{2^{16}})+\dfrac{1}{2^{31}}$
$=2×(1-\dfrac{1}{2^{8}})(1+\dfrac{1}{2^{8}})(1+\dfrac{1}{2^{16}})+\dfrac{1}{2^{31}}$
$=2×(1-\dfrac{1}{2^{16}})(1+\dfrac{1}{2^{16}})+\dfrac{1}{2^{31}}$
$=2×(1-\dfrac{1}{2^{32}})+\dfrac{1}{2^{31}}$
$=2 - \dfrac{1}{2^{31}}+\dfrac{1}{2^{31}}$
$=2$
3. 计算:$(1-\dfrac{1}{2^{2}})×(1-\dfrac{1}{3^{2}})×···×(1-\dfrac{1}{10^{2}})=$
$\frac{11}{20}$
.
答案:3. $\frac{11}{20}$
解析:
$(1-\dfrac{1}{2^{2}})×(1-\dfrac{1}{3^{2}})×···×(1-\dfrac{1}{10^{2}})$
$=(1-\dfrac{1}{2})(1+\dfrac{1}{2})(1-\dfrac{1}{3})(1+\dfrac{1}{3})···(1-\dfrac{1}{10})(1+\dfrac{1}{10})$
$=\dfrac{1}{2}×\dfrac{3}{2}×\dfrac{2}{3}×\dfrac{4}{3}×···×\dfrac{9}{10}×\dfrac{11}{10}$
$=\dfrac{1}{2}×\dfrac{11}{10}$
$=\dfrac{11}{20}$
4. (2024·天宁区校级期中)阅读:在计算 $(x - 1)(x^{n}+x^{n - 1}+x^{n - 2}+···+x + 1)$ 的过程中,我们可以先从简单的、特殊的情形入手,再到复杂的、一般的问题,通过观察、归纳、总结,形成解决一类问题的一般方法,数学中把这样的过程叫作特殊到一般.
【观察】①$(x - 1)(x + 1)=x^{2}-1$;
②$(x - 1)(x^{2}+x + 1)=x^{3}-1$;
③$(x - 1)(x^{3}+x^{2}+x + 1)=x^{4}-1$;
……
(1)【归纳】由此可得:$(x - 1)(x^{n}+x^{n - 1}+x^{n - 2}+···+x + 1)=$
$x^{n + 1} - 1$
;
(2)【应用】请运用上面的结论,解决下列问题:计算:$2^{2023}+2^{2022}+2^{2021}+···+2^{2}+2 + 1$;
(3)【拓展】请运用上面的方法,求 $2^{20}-2^{19}+2^{18}-2^{17}+···-2^{3}+2^{2}-2 + 1$ 的值.
答案:4. (1) $x^{n + 1} - 1$
(2) 解:$2^{2023} + 2^{2022} + 2^{2021} + ··· + 2^{2} + 2 + 1 = (2 - 1)(2^{2023} + 2^{2022} + 2^{2021} + ··· + 2^{2} + 2 + 1) = 2^{2024} - 1$
(3) 解:$2^{20} - 2^{19} + 2^{18} - 2^{17} + ··· - 2^{3} + 2^{2} - 2 + 1 = (-2)^{20} + (-2)^{19} + (-2)^{18} + (-2)^{17} + ··· + (-2)^{3} + (-2)^{2} + (-2) + 1 = -\frac{1}{3} × [(-2) - 1][(-2)^{20} + (-2)^{19} + (-2)^{18} + (-2)^{17} + ··· + (-2)^{3} + (-2)^{2} + (-2) + 1] = -\frac{1}{3} × [(-2)^{21} - 1] = \frac{1}{3} × 2^{21} + \frac{1}{3}$