零五网 全部参考答案 启东中学作业本 2026年启东中学作业本七年级数学下册苏科版 第65页解析答案
1. (2024·南通期末)若关于 $ x,y $ 的二元一次方程组 $\begin{cases}x + y = 4,\\□ = 2\end{cases}$ 的解为 $\begin{cases}x = 1,\\y = 3,\end{cases}$ 则“$□$”可以表示为 ( )

A.$ x $
B.$ x^2 - 3y $
C.$ y - x $
D.$ x - y $
答案:1. C
解析:
将$\begin{cases}x = 1\\y = 3\end{cases}$代入各选项:
A选项:$x=1≠2$
B选项:$x^2 - 3y=1^2 - 3×3=1 - 9=-8≠2$
C选项:$y - x=3 - 1=2$
D选项:$x - y=1 - 3=-2≠2$
C
2. 用代入法解方程组 $\begin{cases}2x + 5y = 21,①\\x + 3y = 8,②\end{cases}$ 下列解法中最简便的是 ( )

A.由①得 $ x = \frac{21}{2} - \frac{5}{2}y $,代入②
B.由①得 $ y = \frac{21}{5} - \frac{2}{5}x $,代入②
C.由②得 $ x = 8 - 3y $,代入①
D.由②得 $ y = \frac{8}{3} - \frac{x}{3} $,代入①
答案:2. C
3. (2025·凉山州改编)若 $(3x + 2y - 19)^2 + |2x + y - 11| = 0$,则 $ x + y = $
8
.
答案:3. 8
解析:
因为$(3x + 2y - 19)^2 + |2x + y - 11| = 0$,且$(3x + 2y - 19)^2 ≥ 0$,$|2x + y - 19| ≥ 0$,所以可得方程组:
$\begin{cases}3x + 2y - 19 = 0 \\2x + y - 11 = 0\end{cases}$
由第二个方程$2x + y - 11 = 0$可得$y = 11 - 2x$,将其代入第一个方程:
$3x + 2(11 - 2x) - 19 = 0$
$3x + 22 - 4x - 19 = 0$
$-x + 3 = 0$
解得$x = 3$,将$x = 3$代入$y = 11 - 2x$,得$y = 11 - 2×3 = 5$,所以$x + y = 3 + 5 = 8$。
8
4. 用代入法解下列方程组:
(1)(2024·丹徒区期末)$\begin{cases}2x + 4y = 5,\\x = 1 - y;\end{cases}$
(2)(2024·浙江)$\begin{cases}2x - y = 5,\\4x + 3y = - 10;\end{cases}$

(3)$\begin{cases}3u + 2v = - 2,\\3u - v = 4;\end{cases}$
(4)$\begin{cases}2s = 3t,\\s = \frac{2t + 5}{3};\end{cases}$
(5)$\begin{cases}3x - 5y = 6,\\x + 4y = - 15;\end{cases}$
(6)$\begin{cases}2x + y - 4 = 0,\\3x - y - 6 = 0.\end{cases}$
答案:4. 解:(1)$\begin{cases}2x + 4y = 5,①\\x = 1 - y,②\end{cases}$
将②代入①,得$2(1 - y) + 4y = 5$,
整理,得$2 + 2y = 5$,解得$y = \frac{3}{2}$.
将$y = \frac{3}{2}$代入②,得$x = 1 - \frac{3}{2} = -\frac{1}{2}$.
所以原方程组的解是$\begin{cases}x = -\frac{1}{2},\\y = \frac{3}{2}.\end{cases}$
(2)$\begin{cases}2x - y = 5,①\\4x + 3y = -10,②\end{cases}$
由①,得$y = 2x - 5$,③
将③代入②,得$4x + 3(2x - 5) = -10$,解得$x = \frac{1}{2}$.
将$x = \frac{1}{2}$代入③,得$y = -4$.
所以原方程组的解是$\begin{cases}x = \frac{1}{2},\\y = -4.\end{cases}$
(3)$\begin{cases}3u + 2v = -2,①\\3u - v = 4,②\end{cases}$
由②,得$v = 3u - 4$,③
将③代入①,得$3u + 2(3u - 4) = -2$,
解得$u = \frac{2}{3}$.
将$u = \frac{2}{3}$代入③,得$v = -2$.
所以原方程组的解是$\begin{cases}u = \frac{2}{3},\\v = -2.\end{cases}$
(4)$\begin{cases}2s = 3t,①\\s = \frac{2t + 5}{3},②\end{cases}$
将②代入①,得$\frac{4t + 10}{3} = 3t$,
解得$t = 2$.
将$t = 2$代入②,得$s = 3$.
所以原方程组的解是$\begin{cases}s = 3,\\t = 2.\end{cases}$
(5)$\begin{cases}3x - 5y = 6,①\\x + 4y = -15,②\end{cases}$
由②,得$x = -4y - 15$,③
将③代入①,得$3(-4y - 15) - 5y = 6$,
解得$y = -3$.
将$y = -3$代入③,得$x = -3$.
所以原方程组的解是$\begin{cases}x = -3,\\y = -3.\end{cases}$
(6)$\begin{cases}2x + y - 4 = 0,①\\3x - y - 6 = 0,②\end{cases}$
由①,得$y = -2x + 4$,③
将③代入②,得$3x - (-2x + 4) - 6 = 0$,
解得$x = 2$.
将$x = 2$代入③,得$y = 0$.
所以原方程组的解是$\begin{cases}x = 2,\\y = 0.\end{cases}$
上一页 下一页