(1) 如图①,请你直接用无刻度的直尺和圆规作出$∠COM$的平分线$OB$.
(2) 如图②,若$A$为边$OM$上一定点,作线段$OA$的反向延长线$OD$,在直线$OA$上方作$∠DOE$,使得$∠DOE=∠MOC$.(请保留作图痕迹)
(3) 已知:在(2)的条件下,射线$OB$平分$∠AOC$,$∠AOB=30^{\circ}$,
求证:射线$OE$是$∠COD$的平分线.
证明:$\because$射线$OB$平分$∠AOC$且$∠AOB=30^{\circ}$,
$\therefore ∠AOC=2\_\_\_\_\_\_=60^{\circ}$.
$\because ∠DOE=∠MOC$,
$\therefore ∠DOE=∠AOC=60^{\circ}$.
$\because ∠DOE+\_\_\_\_\_\_+∠AOC=180^{\circ}$,
$\therefore ∠COE=$
60°
,(填度数)
$\therefore$
∠DOE = ∠COE = 60°
,
$\therefore$射线$OE$是$∠COD$的平分线.