1. (杭州中考)因式分解:$1 - 4y^{2} =$ (
A
)
A.$(1 - 2y)(1 + 2y)$
B.$(2 - y)(2 + y)$
C.$(1 - 2y)(2 + y)$
D.$(2 - y)(1 + 2y)$
答案:1. A 解析:由平方差公式可得,$1 - 4y^{2} = (1 - 2y)(1 + 2y)$,故选A.
2. (2025·威海期末)下列多项式中能用平方差公式分解因式的是 (
D
)
A.$-a^{2} - b^{2}$
B.$a^{2} + (-b)^{2}$
C.$(-a)^{2} + (-b)^{2}$
D.$-a^{2} + 1$
答案:2. D 解析:A.$-a^{2} - b^{2} = -(a^{2} + b^{2})$,无法因式分解;B.$a^{2} + (-b)^{2} = a^{2} + b^{2}$,无法因式分解;C.$(-a)^{2} + (-b)^{2} = a^{2} + b^{2}$,无法因式分解;D.$-a^{2} + 1 = 1 - a^{2} = (1 - a)(1 + a)$,可以用平方差公式因式分解.故选D.
3. 与$7x - y^{2}$之积等于$y^{4} - 49x^{2}$的因式为 (
C
)
A.$7x - y^{2}$
B.$7x + y^{2}$
C.$-
7x -
y^{2}$
D.$y^{2} - 7x$
答案:3. C 解析:$y^{4} - 49x^{2} = (y^{2} + 7x)(y^{2} - 7x)$,$y^{2} - 7x = -(7x - y^{2})$,故另一个因式为$-(y^{2} + 7x) = -7x - y^{2}$,故选C.
4. 教材变式 分解因式:
(1)(兰州中考)$x^{2} - 25y^{2} =$
(x + 5y)(x - 5y)
.
(2)(2025·山西中考改编)$-16 + m^{2} =$
(m + 4)(m - 4)
.
(3)(孝感中考改编)$4(a - b)^{2} - 9b^{2} =$
(2a + b)(2a - 5b)
.
答案:4. (1)$(x + 5y)(x - 5y)$ (2)$(m + 4)(m - 4)$ (3)$(2a + b)(2a - 5b)$
技法点拨 当多项式为两个平方项作差的形式时,可利用平方差公式进行因式分解.在分解因式过程中需要先将多项式变形为$a^{2} - b^{2}$的形式,如本题中的$4(a - b)^{2} - 9b^{2}$可先变形为$[2(a - b)]^{2} - (3b)^{2}$,之后再运用平方差公式分解因式.
5. (1)若$2x + y = 4$,$x - \frac{y}{2} = 1$,则$4x^{2} - y^{2} =$
8
.
(2)(苏州中考)若$a + b = 4$,$a - b = 1$,则$(a + 1)^{2} - (b - 1)^{2}$的值为
12
.
答案:5. (1)8 解析:$\because x - \frac{y}{2} = 1$,$\therefore 2x - y = 2$,$\therefore 4x^{2} - y^{2} = (2x + y)·(2x - y) = 4×2 = 8$.
(2)12 解析:$\because a + b = 4$,$a - b = 1$,$\therefore (a + 1)^{2} - (b - 1)^{2} = (a + 1 + b - 1)(a + 1 - b + 1) = (a + b)(a - b + 2) = 4×(1 + 2) = 12$.
6. 把下列各式分解因式:
(1)$4a^{2} - 9$;
(2)$-\frac{1}{25}m^{2} + 16n^{2}$;
(3)$(3x - y)^{2} - (x - 3y)^{2}$;
(4)$(x^{2} - 7)^{2} - 4$;
(5)$(a - b)(a + 4b) - 3ab$;
(6)$4(a - b)^{2} - 16(a + b)^{2}$;
(7)$81a^{4} - b^{4}$;
(8)$9(x + y + z)^{2} - (x - y - z)^{2}$.
答案:6. (1)原式$ = (2a + 3)(2a - 3)$.
(2)原式$ = (\frac{1}{5}m + 4n)(-\frac{1}{5}m + 4n)$.
(3)原式$ = (3x - y + x - 3y)(3x - y - x + 3y) = (4x - 4y)(2x + 2y) = 8(x - y)(x + y)$.
(4)原式$ = (x^{2} - 7 + 2)(x^{2} - 7 - 2) = (x^{2} - 5)(x + 3)(x - 3)$.
(5)原式$ = a^{2} + 4ab - ab - 4b^{2} - 3ab = a^{2} - 4b^{2} = (a + 2b)(a - 2b)$.
(6)原式$ = 4[(a - b) + 2(a + b)][(a - b) - 2(a + b)] = -4(3a + b)(a + 3b)$.
(7)原式$ = (9a^{2} + b^{2})(9a^{2} - b^{2}) = (9a^{2} + b^{2})(3a + b)(3a - b)$.
(8)原式$ = (3x + 3y + 3z - x + y + z)(3x + 3y + 3z + x - y - z) = (2x + 4y + 4z)(4x + 2y + 2z) = 4(x + 2y + 2z)(2x + y + z)$.
7. (2025·内江校级月考)若$a$,$b$,$c$是三角形的三边,则代数式$(a - b)^{2} - c^{2}$的值是 (
B
)
A.正数
B.负数
C.等于零
D.不能确定
答案:7. B 解析:$(a - b)^{2} - c^{2} = (a - b + c)(a - b - c)$,因为$a$,$b$,$c$是三角形的三边,根据三角形的三边关系可得,$a - b + c = a + c - b > 0$,$a - b - c = a - (b + c) < 0$,所以$(a - b)^{2} - c^{2}$的值是负数,故选B.
8. 已知$7^{24} - 1$可被$40$至$50$之间的两个整数整除,这两个整数可以是 (
C
)
A.$41$,$48$
B.$45$,$47$
C.$43$,$48$
D.$41$,$47$
答案:8. C 解析:$7^{24} - 1 = (7^{12} + 1)×(7^{12} - 1) = (7^{12} + 1)×(7^{6} + 1)×(7^{6} - 1) = (7^{12} + 1)×(7^{6} + 1)×(7^{3} + 1)×(7^{3} - 1) = (7^{12} + 1)×(7^{6} + 1)×(7 + 1)×(7^{2} - 7×1 + 1)×(7 - 1)×(7^{2} + 7×1 + 1) = (7^{12} + 1)×(7^{6} + 1)×8×43×6×57 = (7^{12} + 1)×(7^{6} + 1)×48×43×57$,因为$7^{24} - 1$可被40至50之间的两个整数整除,所以这两个整数可以是48,43.故选C.
9. 已知$2010^{2026} - 2010^{2024} = 2010^{x}×2009×2011$,那么$x$的值为 (
B
)
A.$2023$
B.$2024$
C.$2025$
D.$2026$
答案:9. B 解析:$2010^{x}×2009×2011 = 2010^{x}×(2010 - 1)×(2010 + 1) = 2010^{x}×(2010^{2} - 1) = 2010^{x + 2} - 2010^{x}$,所以$2010^{2026} - 2010^{2024} = 2010^{x + 2} - 2010^{x}$,所以$x = 2024$,故选B.
10. (2025·新乡期中)如图,边长为$2m + 3$的正方形纸片剪出一个边长为$m + 3$的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为$m$,则另一边长为
3m + 6
.

答案:10. $3m + 6$ 解析:由题意,$(2m + 3)^{2} - (m + 3)^{2} = [(2m + 3) + (m + 3)]·[(2m + 3) - (m + 3)] = m·(3m + 6)$,因为拼成的长方形一边长为$m$,则另一边长为$3m + 6$.